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Abstract: In this paper we study the Hausdorff approximation of the Heaviside step function ( )rh t  by 

sigmoidal curve model based on the transmuted inverse exponential software reliability model and find an 

expression for the error of the best approximation. Some comparisons are made. 
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I. INTRODUCTION 

The transmuted inverse exponential distribution – (TIED) is popular for modeling lifetime data in 

engineering, reliability, biomedical sciences and life testing [1]. The (TIED) is based on the contents of [2]. 

For the generalized inverted exponential distribution, see [3]–[5]. 

Some software reliability models, can be found in [6]–[17]. 

A new class of Gompertz–type software reliability models and some deterministic reliability growth 

curves for software error detection, also approximation and modeling aspects, can be found in [19]–[22]. 

In this note we study the Hausdorff approximation of the Heaviside step function ( )rh t  by sigmoidal 

curve model based on the transmuted inverse exponential software reliability model and find an expression for 

the error of the best approximation. 

 

II. TRANSMUTED INVERSE EXPONENTIAL SOFTWARE RELIABILITY MODEL 
We consider the transmuted inverse exponential cumulative distribution function – (TIECDF):  

 ( ; , ) = 1t tM t e e
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where   is a scale parameter and   is the transmuted parameter. 
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and the sigmoid (1) satisfies the relation  

 0( ; , ) =1 .M t d d    (3) 

 

The following theorem gives upper and lower bounds for d : 

 

 Theorem. Let  
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For the one–sided Hausdorff distance d  between 
0

th  and the curve (1) the following inequalities hold for:  
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 Proof. Let us examine the functions:  

 0( ) = ( ; , ) 1 ,F d M t d d     (5) 

 

 ( ) = .G d a bd  (6) 

 

From Taylor expansion we obtain 
2( ) ( ) = ( )G d F d O d . 

Hence ( )G d  approximates ( )F d  with 0d   as 
2( )O d  (see Fig. 1). 

In addition ( ) > 0G d . 

Further, for 
0.990.99

>
b

e
a

 we have ( ) < 0lG d  and ( ) > 0rG d . 

 

This completes the proof of the theorem. 

 

 
 

Figure  1: The functions ( )F d  and ( )G d  for = 0.08 , = 0.9 . 

 

 

The model (1) for = 0.08 , = 0.9 , 0 = 0.0679563t  is visualized on Fig. 2. 
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The model (1) for = 0.04 , = 0.96 , 
0 = 0.0331172t  is visualized on Fig. 3. 

The model (1) for = 0.01 , = 0.99 , 
0 = 0.00817702t  is visualized on Fig. 4. 

 

 

 
 

Figure  2:  The model (1) with = 0.08 , = 0.9 , 0 = 0.0679563t ; H–distance = 0.131394d ; 

= 0.0617319ld ; = 0.17192rd . 

 

 

 
 

Figure  3:  The model (1) with = 0.04 , = 0.96 , 0 = 0.0331172t ; H–distance = 0.0876238d ; 

= 0.0313529ld ; = 0.108557rd . 

 

 

 
 

Figure  4:  The model (1) with = 0.01 , = 0.99 , 0 = 0.00817702t ; H–distance = 0.0386002d ; 

= 0.00802311ld ; = 0.0387149rd . 

 

III. REMARKS 
The estimation of remaining errors in the software is the deciding factor for the release of the software 

or the amount of more testing which is required software growth reliability models are using for the correct 

estimation of the remaining errors. 
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IV. NUMERICAL EXAMPLES 
We examine the following data (see Table 1). (The data were reported by Musa [24] and represent the 

failures observed during system testing for 25 hours of CPU time.) 

 

Hour Number 

of failures 

Cumulative 

failures 

1 27 27 

2 16 43 

3 11 54 

4 10 64 

5 11 75 

6 7 82 

7 2 84 

8 5 89 

9 3 92 

10 1 93 

11 4 97 

12 7 104 

13 2 106 

14 5 111 

15 5 116 

16 6 122 

17 0 122 

18 5 127 

19 1 128 

20 1 129 

21 2 131 

22 1 132 

23 2 134 

24 1 135 

25 1 136 

 

Table 1: Failures in 1 Hour (execution time) intervals and cumulative failures [24], [23]. 

 

 
Figure  5: Comparison between ( )g t – (dashed) and ( )f t – (thick). 
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  In [22] we consider the generalized inverted exponential cumulative distribution function – (GIECDF) 

for modeling lifetime data in software error detection:  

 ( ) = 1 1 .tg t e


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   
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 (7) 

The fitted model (7) based on the data of Table 1 for the estimated parameters:  

 =136; = 3.1446927524; =1.1268337951    

is plotted on Fig. 5. 

We consider the transmuted inverse exponential cumulative distribution function – (TIECDF):  

 ( ) = 1 .t tf t e e
 

  
  

  
 

 (8) 

The fitted model (8) based on the data of Table 1 for the estimated parameters:  

 =136; =1.7646399225; = 0.55930741482     

is also plotted on Fig. 5. 

From the presented comparisons, cf. Fig. 5, it can be seen that in some cases the model reliability 

proposed in this article is "flexible" compared to many other, seemingly refined models. 
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