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Abstract: In this paper, an improved SA is presented for solving multiobjective programming problems, in 

which a new method for computing energy difference is proposed and the external file technology is used. And 

a set of approximate Pareto optimal solutions for multiobjective programming problem is obtained using the 

elite strategy. This interactive procedure is repeated until the accurate Pareto optimal solutions of the original 

problem are found. The experimental results show that the proposed algorithm is a feasible and efficient method 

for solving multiobjective programming problems. 
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1. Introduction 

Simulated annealing (SA) [1] is a stochastic optimization method that is based on an analogy with 

physical annealing, which has been found to be quite successful in a wide variety of optimization tasks. Initially, 

SA has been used with combinatorial optimization problems [2]. Afterwards, SA has been extended to the single 

and multiobjective optimization problems with continuous N-dimensional control spaces [3-5].  

The SA algorithm realizes the combination of the local search and global search through the cooling 

schedule. The cooling schedule is critical to the performance of the algorithm. Usually, the candidate solution is 

created by the current solution with a random perturbed vector, the probability density function of the random 

perturbed vector and the accept probability of the corresponding candidate solution are in relation to the 

temperature. When the temperature is higher, the search range of the candidate solution is wider, and it can also 

be accepted easily. When temperature is lower, the candidate solutions are constrained in the local area of the 

current solution, the search become local exploration. In this study, in order to improve the global search ability 

of the SA algorithm, the random perturbation vector is constructed based on cooling schedule used in literature 

[6] and the global convergence can be guaranteed. On the other hand, for the multiobjective optimization 

problem, the method for computing the energy difference between the current solution and the candidate 

solution used by [5] is employed in this paper.  

2. Problem formulation 

Let ,nRx mn RRf : , 
qn RRg : . The general model of the BLMPP can be written as 

follows: 

     
y

min  )(xf = ( )(,),(),( 21 xfxfxf m )                                  

..ts   ( ) 0g x                                                             
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       ( ) 0h x  .                                                       (1) 

where ( , )f x y are the objective function. ( , )g x y and ( , )h x y denote the equality constraints and inequality 

constraints. Let {( , ) | ( , ) 0, ( , ) 0}S x y g x y h x y   . 

Definition  2.1. If x S , then x is a feasible solution of the problem (1). 

Definition 2.2. If 
*x  is a feasible solution to the problem (1), and there are no x S , such 

that
*( ) ( )f x f x , then 

*x  is a Pareto optimal solution to the problem (1), where “ ” denotes Pareto 

preference. 

3. The Algorithm 

3.1 The improved SA algorithm  

Suppose the current solution is
kX , the candidate solution is

kY , for the k th  iteration at 

temperature kT , the particle is updated by the improved SA as following:  

Algorithm 1: 

Step1 Create candidate solution according to the current solution. 

k k kY X                                      (2) 

Step2 Compute energy difference between the current solution and the candidate solution. 

 
1

( , ) k k

k k

X Y
E X Y F F

F
   , (0,1)random  .           （3）                      

Step3 Compute transition probability.  

 ( | , ) min 1,exp( ( , ))k k k k

kp Y X T E X Y  .           （4）              

Step4 Choose the offspring. 

If ( | , )k k

kp Y X T  ,
1k kX Y  ; Otherwise 

1k kX X  .       （5） 

In step1, 1 2( , , , )k k k k

n     , and the component 
k

i of the random perturbed vector 
k  is 

produced as：
1

( ) 1  k

i i k m

i

sign U T
U


 

  
 
 

, ( 1,2, ,i n  ), 1 2, , , ( 1,1)nU U U random   

are mutual independence uniform distribution random variables, ( )sign  is the sign function, m ( 1m  ) is 

the predefined constant. In step 2, F is the approximate Pareto front, which is the set of mutually 

non-dominating solutions found thus far in the annealing. Denote by F  the union of the F , the current 
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solution 
kX  and the proposed solution

kY , that is
k kF F X Y   . Then, let kX

F  be the elements of 

F that dominate
kX  and let kY

F  be the elements of F that dominate
kY .  

Algorithm 2: 

Step 1.  Initializing. Initialize the population 
0P with N particles. The start temperature and the end 

temperature are noted as 
maxT  and fT  respectively, let the iteration number 0k  and let

maxkT T . 

Initialize the loop counter : 0lt  . The non-domination particles are saved in the elite set tA  

Step 2. Update the j th  ( 1,2, ,j N   ) particle’s position using Algorithm 1. 

Step 3. : 1l lt t  . 

Step 4. If l lt T , go to step 5. Otherwise, go to step 2. 

Step 5.  Update the elite set tA ..  

Step 6.  : 1k k  , computing
max:  k m

T
T

k
 . 

Step 7.  If ,kT T  output the elite set tA . Otherwise, go to step 2. 

4. Numerical experiment 

In this section, six examples will be considered to illustrate the feasibility of the proposed algorithm for 

problem (1). The parameter is as following: 2000 P , , ,106

max T  
310fT ， 3m . All results 

presented in this paper have been obtained on a personal computer (CPU: AMD 2.80GHz; RAM: 3.25GB) using 

a C# implementation of the proposed algorithm. 

Problem 1
[5] 

x
min  

2

1 )( xxf   

     
2

2 )2()(  xxf  

33 1010   x .   
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Figure 1 The obtained Pareto front of problem 1 

 

Problem 2
[5] 

x
min 








 



3

1

2

1 )
3

1(exp1)(
i

ixxf  

     







 



3

1

2

2 )
3

1(exp1)(
i

ixxf  

44  x  
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Figure 2 The obtained Pareto front of problem 2 

。The obtained Pareto optimal front by the proposed algorithm 

— The theoretical Pareto optimal front 

 

。The obtained Pareto optimal front by the proposed algorithm 

— The theoretical Pareto optimal front 
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Problem 3
[5] 

x
min  11 )( xxf   

     







 )10sin(

)()(
1)()( 1

11
2 x

xg

x

xg
x

xgxf   

其中，
)1(

9

1)( 2
















n

x

xg

n

i

i

 

      10  ix   30,,3,2 i . 
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Figure 3 The obtained Pareto front of problem 3 

5. Conclusion 

In this paper, an improved SA algorithm is presented, in which a heuristic criterion for determining the 

temperature updating function of SA algorithm is applied in this paper, enabling the particle to escape the local 

optima. The improved SA algorithm is employed for solving multiobjective programming problem for the first 

time. In this study, some numerical examples are used to explore the feasibility and efficiency of the proposed 

algorithm. The experimental results indicate that the obtained Pareto front by the proposed algorithm is very 

close to the theoretical Pareto optimal front, and the solutions are also distributed uniformly on entire range of 

the theoretical Pareto optimal front. The proposed algorithm is simple and easy to implement, which provides 

another appealing method for further study on multiobjective programming problems.  

 

 

。The obtained Pareto optimal front by the proposed algorithm 

— The theoretical Pareto optimal front 
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