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Abstract: The methodology was used to obtain new functions of distribution of normal probability and 

extreme value by Bayesian inference and stochastic mixing of Gaussians. The proposed methodology is oriented 

to data with Gaussian behavior and consists of adjusting the normal distribution function to the data of time 

series of maximum temperature data, to give a behavior of the temperatures maximum, later we use the 

Bayesian inference for normal data, in this case we are looking for behavior and trends with new Gaussian 

functions and extreme value. To validate the model we use the following statistical estimators: measurement of 

the root of the quadratic error, quadratic error, coefficient of determination and prediction approximation. 

Using the new means and variances of the new functions of extreme distribution we generate two new functions 

of normal distribution a minimum and a maximum. Thus already having the three normal probability 

distribution functions, the adjusted first and the two new normal distribution functions we introduce the 

Gaussian stochastic mixing method to give a new function of general normal probability distribution for the 

trend of the maximum temperatures for Mexico City. In addition to making a temperature forecast with the 

WRF for comparison. The database that is used is from the page of the City of Mexico 

http://www.aire.cdmx.gob.mx/ 

Keywords: Temperature, Random and Extreme Variable Distribution Functions, Bayesian Inference, WRF. 

 

Introduction 
In the normal distribution, equation (1) one can calculate the probability that several values will occur 

within certain ranges or intervals. However, the exact probability of a particular value within a continuous 

distribution, such as the normal distribution, is zero. This property distinguishes the continuous variables, which 

are measured, from the discrete variables, which are counted. As an example, time (in seconds) is measured and 

not counted. 

 

𝝋 𝒙 =
𝟏

𝝈 𝟐𝝅
𝒆
 −

 𝒙−𝝁 𝟐

𝟐𝒂𝟐
 
 

(1) 

 

 
Figure 1. Gaussian bell or Gaussian density function (Source: Internet) 
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Now, as we obtain the estimation parameters of a probability distribution function, we will use the 

Maximum Likelihood technique the parameters to be estimated for the adjustment. The maximum likelihood 

method is a procedure to obtain a point estimator of a random variable. 

Let (X1, ..., Xn) be a random sample with a distribution function f (x | θ). 

 

We define the likelihood function as: 

𝑳 𝜽 𝑿𝟏, 𝑿𝟐, … 𝑿𝒏 =   𝒇(𝑿𝒊|𝜽)

𝒏

𝒊=𝟏

 

 

(2) 

The estimator of θ in the maximum likelihood method is the value that maximizes the likelihood function. This 

value is called the maximum likelihood estimator EMV (θ). 

Be: 

𝑳 𝜽 𝑿𝟏, 𝑿𝟐, … 𝑿𝒏 = 𝐥𝐧 𝑳 𝜽 𝑿𝟏, 𝑿𝟐, … 𝑿𝒏  =   𝒇(𝑿𝒊|𝜽)

𝒏

𝒊=𝟏

 
(3) 

 

So the maximum likelihood estimator is defined as: 

𝑬𝑴𝑽 𝜽 = 𝐦𝐚𝐱
𝜽∈𝜣

𝑳 𝜽 𝑿𝟏, 𝑿𝟐, … 𝑿𝒏  (4) 

By means of the above description we obtain the parameters of a Normal Distribution which are doing the 

following: 

By the Maximum Likelihood Method, the likelihood function will be:By means of the above description we 

obtain the parameters of a Normal Distribution which are doing the following: 

By the Maximum Likelihood Method, the likelihood function will be: 

𝑳  𝝁, 𝝈 =   
𝟏

𝝈 𝟐𝝅
 
𝑵

𝒆
 −

  𝒙−𝝁 𝟐

𝟐𝝈𝟐
 
 

(5) 

 

Applying logarithms and deriving with respect to the parameters to be estimated, we have a system of equations 

as follows: 
𝝏𝐥𝐨𝐠⁡(𝑳  𝝁, 𝝈 )

𝝏𝝁
=  
 𝒙

𝝈𝟐
−
𝑵𝝁

𝝈𝟐
= 𝟎 

 

(6) 

𝝏𝐥𝐨𝐠⁡(𝑳  𝝁, 𝝈 )

𝝏𝝈
=  −

𝑵

𝝈
+
  𝒙 − 𝝁 𝟐

𝝈𝟑
= 𝟎 

 

 

With the Solution: 

𝝁 = 𝒙        𝒚         𝝈𝟐 =
𝟏

𝑵
  𝒙 − 𝝁 𝟐
𝑵

𝒊=𝟏

 

(7) 

With the first adjusted Normal we get 

𝑵𝒐𝒓𝒎𝒂𝒍(𝝁, 𝝈𝟐) (8) 

Now what we are looking for are extreme values that we want to know, the probability of occurrence, so we use 

the Bayesian Inference to find this probability with a new distribution function that will be part of the new 

functions of normal distribution and function of extreme variable or gev, our new unknown will be the average. 

 

Bayesian inference 
Bayesian inference is the process of analyzing statistical models with the incorporation of prior 

knowledge about the model or model parameters. The root of such inference is Bayes' theorem: 

 

𝑷 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝑫𝒂𝒕𝒂 

=  
𝑷 𝑫𝒂𝒕𝒂 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 ∗ 𝑷(𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓)

𝑷(𝑫𝒂𝒕𝒂)
 

≈ 𝑭𝑽𝒆𝒓𝒐𝒔𝒊𝒎𝒊𝒍𝒊𝒕𝒖𝒅 ∗ 𝑷𝑫𝑭 𝑷𝒓𝒊𝒐𝒓𝒊 

(9) 

 

In this case we have the observations in the normal distribution form 

𝑿|𝜽 ~ 𝑵(𝜽, 𝝈𝟐) (10) 

 

Where the sigma is previously known and the PDF a Priori is 
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𝜽 ~ 𝑵(𝝁, 𝝉𝟐) (11) 

 

Here mu and tao are also known, we are looking for n samples of the observed data, in the case of Ozone 

the maximum values or above 150 ppb, the PM10 particulate case above 120 microgram / m3 (2018), the 

case of PM2. 5 above 65 microgram / m3 and in the case of Maximum Temperatures it is the whole Data 

sample and thus we obtain the New Normal Distribution Function with the new searched parameter: 

𝜽|𝑿 ~ 𝑵𝑩 
𝝉𝟐

𝝈𝟐

𝒏
+ 𝝉𝟐

∗ 𝑿 + 

𝝈𝟐

𝒏

𝝈𝟐

𝒏
+ 𝝉𝟐

∗ 𝝁,

𝝈𝟐

𝒏
∗ 𝝉𝟐

𝝈𝟐

𝒏
+ 𝝉𝟐

  

(12) 

 

Now this data contains noise, there are null values or zeros, from the adjustment process and although we have a 

good approximation it is seen that it does not adjust well to the data so that they produce inaccuracy to the 

Normal Distribution Function, therefore we apply a random noise with a Uniform Distribution with the length of 

the terms of the time series of the data, we now apply an adjustment with the Extreme Value Distribution 

Function (GEV) to find the parameters that better fit these data with the random noise 

𝑮𝑬𝑽( 𝝁, 𝝈, 𝒌) (13) 

 

A GEV is adjusted with this uniform random distribution 

𝑮𝑬𝑽𝒂(𝑿𝒂, 𝝁, 𝝈, 𝒌𝟏) (14) 

 

And subsequently a GEVa is generated (with the random parameters of GEVa) 

𝑮𝑬𝑽𝑨( 𝝁𝒂, 𝝈𝒂, 𝒌𝟏) (15) 

 

We also now adjust a GEV of the Input Data, this is where the Extreme Value Theory comes in, and now we 

look for a new Distribution Function, and it is where the new equation is applied based on the properties of the 

parameters that were previously obtained: 

 

GEV 1 

𝒌𝟐 =   
𝑮𝑬𝑽𝒌 + 𝑮𝑬𝑽𝒌𝑨

 𝒑𝒏𝟐
𝒊=𝟏

  

 

(16) 

𝑺𝒊𝒈𝒎𝒂𝑺𝑫 =   
𝑮𝑬𝑽𝒔𝒅 + 𝑷𝒐𝒔𝒕𝑺𝑫

 𝒑𝒏𝟐
𝒊=𝟏

  

 

(17) 

  

𝑴𝒖𝒑𝒐𝒔𝒕𝒎𝒆𝒂𝒏 =   
𝑮𝑬𝑽𝒎𝒖+ 𝑷𝒐𝒔𝒕𝒎𝒆𝒂𝒏

 𝒑𝒏𝟐
𝒊=𝟏

  

 

(18) 

 
  

 

Now we get a second equation to get the new parameters 

GEV 2 

𝒌𝟐 =   
𝑮𝑬𝑽𝒌 + 𝑮𝑬𝑽𝒌𝑨

 𝒑𝒏𝟐
𝒊=𝟏

  

 

(19) 

𝑺𝒊𝒈𝒎𝒂𝑺𝑫𝟐 =   
𝑮𝑬𝑽𝒔𝒅 + 𝑷𝒐𝒔𝒕𝑺𝑫 + 𝑮𝑬𝑽𝒔𝒅𝑨

 𝒑𝒏𝟑
𝒊=𝟏

  

 

(20) 

 
 

𝑴𝒖𝒑𝒐𝒔𝒕𝒎𝒆𝒂𝒏𝟐

=   
𝑮𝑬𝑽𝒎𝒖+ 𝑷𝒐𝒔𝒕𝒎𝒆𝒂𝒏 + 𝑮𝑬𝑽𝒎𝒖𝑨

 𝒑𝒏𝟑
𝒊=𝟏

  

 

(21) 

The functions of extreme value or GEVs with the new parameters of the new functions of extreme distribution 

see [14]: 

𝑮𝑬𝑽(  
𝝁𝒊
𝒏

𝒏

𝒊=𝟏

 ,
𝟏

𝒏 − 𝟏
 𝝈𝒊

𝒏−𝟏

𝒊=𝟏

 , 𝒌) 

(22) 
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With 

𝒌 > 0  𝑥 ∈   𝝁 −
𝝈

𝒌
, +∞  

 

 

𝑘 < 0  𝑥 ∈   −∞, 𝜇 −
𝜎

𝑘
  

 

 

According to the previous definition, the shape parameter can be deduced from the method of higher moments is 

between two givens that there are two parameters of minor order composing this, according to the equations 

obtained, if we would not use Newton Rhapsonforget the mentioned parameters, so then we have: 

𝝁 −
𝝈

𝒌
= 𝟎   𝒚    𝒂𝒔𝒊   𝒌 =

𝝈

𝝁
 

 

(23) 

𝒌 =
 

𝝈𝒊

𝒏−𝟏

𝒏−𝟏
𝒊=𝟏

 
𝝁𝒊

𝒏

𝒏
𝒊=𝟏

=   

𝝈𝒊

𝒏−𝟏
𝝁𝒊

𝒏

𝒏

𝒊=𝟏

=  
𝝈𝒊𝒏

𝝁𝒊(𝒏 − 𝟏)

𝒏

𝒊=𝟎

=  
𝒏𝒌𝒊

(𝒏 − 𝟏)

𝒏

𝒊=𝟎

 

 

(24) 

Observing the Series you can reach the equivalent sum and thus obtain an expression for the form parameter 

𝒌 =  
𝒌𝒊
𝒏

𝒏

𝒊=𝟎

 

 

(25) 

Then we have the following 

𝑮𝑬𝑽(  
𝝁𝒊
𝒏

𝒏

𝒊=𝟏

 ,
𝟏

𝒏 − 𝟏
 𝝈𝒊

𝒏−𝟏

𝒊=𝟏

 , 
𝒌𝒊
𝒏

𝒏

𝒊=𝟎

) 

 

(26) 

We have the following probability distribution functions, the Bayesian Normal, the GEV of the data 

and the Random GEV, therefore there are 3 functions that we have so the first two sums of two probability 

distribution functions.We have the following probability distribution functions, the Bayesian Normal, the GEV 

of the data and the Random GEV, therefore there are 3 functions that we have so the first two sums of two 

probability distribution functions. 

 

Table 2. GEV and Normal probability distribution functions 

GEV Normales 

𝐺𝐸𝑉( 𝜇, 𝜎, 𝑘) 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2) 

𝐺𝐸𝑉(𝑀𝑢𝑝𝑜𝑠𝑡𝑚𝑒𝑎𝑛 𝜇, 𝑆𝑖𝑔𝑚𝑎𝑆𝐷 𝜎, 𝑘2) 𝑁𝑜𝑟𝑚𝑎𝑙1(𝐸 𝐺𝐸𝑉1 ,  𝑉𝑎𝑟 𝐺𝐸𝑉1 ) 

𝐺𝐸𝑉(𝑀𝑢𝑝𝑜𝑠𝑡𝑚𝑒𝑎𝑛2 𝜇, 𝑆𝑖𝑔𝑚𝑎𝑆𝐷2 𝜎, 𝑘2) 𝑁𝑜𝑟𝑚𝑎𝑙2(𝐸 𝐺𝐸𝑉2 ,  𝑉𝑎𝑟 𝐺𝐸𝑉2 ) 

 
Adjustment Indicators 

The deviation indicators of a group of data in relation to a model can be used to assess the goodness of 

fit between the two. Among the most common indicators are the following. Those that were used to determine 

the distribution that best fit gave the data. They are the mean square error (RMSE), mean square error (MSE), 

prediction accuracy (PA) and coefficient of determination (R2) Table 4 gives the equations for the adjustment 

indicators that have been used by Lu (2003) and Junninen et al. (2002). 

 

Table 3. Adjustment Indicators 

Indicators Equations 

Root Mean Square Error (Raíz Cuadrada del 

Error) 
𝑹𝑴𝑺𝑬 =   

𝟏

𝑵 − 𝟏
   𝑷𝒊 − 𝑶𝒊 𝟐

𝑵

𝒊=𝟏

 

Mean Square Error (Error Cuadrado Principal) 

𝑹𝑴𝑺𝑬 =  
𝟏

𝑵
   𝑷𝒊 − 𝑶𝒊 𝟐

𝑵

𝒊=𝟏

 

CoeficienteofDetermination (Coeficiente de 

Determinación) 𝑹𝟐 =  
  𝑷𝒊 − 𝑷  𝑶𝒊 − 𝑶 𝑵
𝒊=𝟏

𝑵𝑺𝒑𝑺𝒐
 

𝟐
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PredictionAccuracy (Precisión de Predicción) 
𝑨𝑷 =

  𝑷𝒊 − 𝑶 𝟐𝑵
𝒊=𝟏

  𝑶𝒊 − 𝑶 𝟐𝑵
𝒊=𝟏

 

 

Notation: N = number of observations, 𝑃𝑖= predictive valúes, 𝑂𝑖= observed values, P = average of predicted 

values, O = average of the observed values, 𝑆𝑝= Standard Deviation of Predicted valúes, 𝑆𝑜  = Standard 

deviation of theobserved valúes.  

 
Stochastic Method of Gaussian Mixtures 

The grouping model most closely related to statistics is the distributions-based model. Groups can then 

easily be defined as the objects that most likely belong to the same distribution. A convenient property of this 

approach is that this closely resembles the way in which artificial data sets are generated: by random sampling 

of objects in a distribution. 

One of the most prominent methods is known as the Gaussian mixing model (used in the expectation-

maximization algorithm). Here, the data set is usually modeled with a fixed number (to avoid overfitting) of 

Gaussian distributions that is randomly initialized, and whose parameters are iteratively optimized to better 

classify the data set. This will converge to a local optimum, multiple runs can produce different results. To 

obtain a good grouping, the data are often assigned to the Gaussian distribution with a higher probability of 

belonging to such grouping. 

The Gaussian mixture models are a probabilistic model to represent subpopulations normally 

distributed within a general population. Mixing models in general do not require knowing to which 

subpopulation a data point belongs, which allows the model to automatically learn the subpopulations, using 

Expectation-Maximization (EM). 

GMMs are widely used for grouping and estimating. However, they have a wide range of applications 

in other fields, such as modeling meteorological observations in Geosciences (Zi, 2011), certain autoregressive 

models or the noise of some time series. 

If you believe that your data comes from a set of different normal distributions, then the GMM is an 

appropriate analysis tool. The normal distribution is an underlying assumption, which means that, although it is 

assumed that the distributions are Gaussian, or it is possible that they are not. In some cases, you may not be 

able to count, but use logic or prior knowledge to assume that your data has a normal distribution. Therefore, 

models created from a GMM method carry a certain level of uncertainty. 

A Gaussian mixing model means that each data point is put (randomly) from one of the data classes C, 

with probability 𝑝𝑖  to be extracted from class i, and each class is distributed as Gaussian with mean standard 

deviation 𝜇𝑖  and𝜎𝑖 . Given a set of data extracted from this distribution, we seek to estimate these unknown 

parameters. 

The algorithm used here for the estimation is EM (Maximization of expectation). In short, if we knew 

the class of each of the N input data points, we could separate them, and use Maximum Probability to estimate 

the parameters of each class. This is the step that performs (soft) selections of (unknown) classes for each of the 

data points based on the previous round of parameter estimates for each class. 

 
Figure3. Basic equations of EM Algorithms (Source: http://mccormickml.com/2014) 

 

 

 

 

 

 

http://mccormickml.com/2014
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Results of the Obtaining New Gaussians the first 3 and last years 
Normal PDF and its 

Means 

Adjustment, error and approximation 

estimators 

AverageConfidence Interval 

2005 

Normal= 24.78 

Normal1= 24.78 

Normal2= 24.38 

MSE= 3.6835e-04 

RMSE = 0.0199 

PA= 1.033 

R2=0.9632 

AI=0.9994 

 

CI =19.23   26.48 

CI1 =21.16   28.40 

CI2 =20.76   28.00 

2006 

Normal= 21.55 

Normal1= 21.54 

Normal2= 21.31 

MSE= 5.3664e-04 

RMSE= 0.0238 

PA=1.0355 

R2=0.9714 

AI=0.9992 

 

CI =16.21   24.18 

CI1 =17.56   25.52 

CI2 =17.33   25.29 

2007 

Normal= 21.51 

Normal1= 21.38 

Normal2= 22.53 

MSE=0.0031 

RMSE=0.0573 

PA=0.9704 

R2=0.9696 

AI=0.9956 

CI =19.12   27.43 

CI1 =17.23   25.53 

CI2 =18.37   26.68 

2016 

Normal= 23.32 

Normal1= 23.43 

Normal2= 22.54 

MSE=0.0010 

RMSE=0.0323 

PA=1.0397 

R2= 0.9853 

AI=0.9985 

CI =18.81   22.61 

CI1 =21.53   25.33 

CI2 =20.64   24.44 

2017 

Normal= 24.73 

Normal1= 24.82 

Normal2= 24.43 

MSE=2.3069e-04 

RMSE=0.0154 

PA=1.0158 

R2=0.9869 

AI=0.9997 

CI =21.45   25.30 

CI1 =22.90   26.75 

CI2 =22.51   26.36 

2018 

Normal= 23.994     

Normal1= 24.13     

Normal2= 23.56     

MSE=3.8493e-04 

RMSE=0.0198 

PA=0.9829 

R2=0.9885 

AI=0.9995 

CI =23.67   24.30 

CI1 =23.82   24.45 

CI2 =23.25   23.88 

 

Figures 4. Temporal Series of Daily Maximum Concentrations of O3 and its PDF GEV 

 

Table 5. 2017 
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Table6. 2018 
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Table 7. QQ plot 2017-2018 

 
 

  
 

Tables 8. Ofthe Gaussian Mixture 
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Table 9. Of Data Shown and Data Official 

Years 

  

 México 

City 

CONAGUA    

MaximumTemperaturesC° 

Means Obtained from 

Gaussian Sums or 

Convolutions of 

Maximum 

Temperatures C ° 

Temperatureanomaly Average Gaussian 

mixture temperature 

C°  

2005 23.7 24 +1.4 C° 24.77 

2006 23.9 22.5 +0.5 C° 21.50 

2007 23.9 23 +0.5 C° 21.41 

2008 23.7 23.5 +1.65 C° 23.56 

2009 24.4 21.5 +0.5 C° 20.37 

2010 23.6 22 +1.6 C° 21.50 

2011 24.2 23.6 +1.6 C° 23.95 

2012 23.4 22 +1.5 C° 20.99 

2013 24.6 23.5 +0.5 C° 23.11 

2014 23.8 23 +1.0 C° 23.11 

2015 23.9 24 +1.0 C° 24.76 

2016 24.1 23 +1.7 C° 23.37 

2017 24.6 24.7 +1.7 C° 23.37 

2018 24.3 24.0 +0.7 C° 24.07 

 
Data Sources:https://smn.cna.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-

temperaturas-y-lluvias 

http://www.aire.cdmx.gob.mx 

 
 

 

https://smn.cna.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias
https://smn.cna.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias
http://www.aire.cdmx.gob.mx/
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Table 10. Temperature Averages Obtained with the new Normals and the Gaussian Mixture. 

 
 

Figure 5. Temporal Series of Maximum Daily Temperatures 

and their found values 

 
Gaussian adjustment in Red 

Gaussian adjustment and GEV 1 in blue 

Gaussian adjustment and GEV 2 in black 

Light Blue Data CONAGUA CDMX 

Informative references: 

https://www.eleconomista.com.mx/politica/7

-efectos-visibles-del-calentamiento-global-

en-la-Ciudad-de-Mexico-20170603-

0010.html 
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2015, 2016 and 2017 have been the hottest 

years since there are records 

 
As you can see both the Gaussian sums as the new Gaussians and the new GEV, reference [14] are 

giving the trend with the means found and corroborate the given measurements, which we can express that 

temperatures are increasing in the CDMX.As you can see both the Gaussian sums as the new Gaussians and the 
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https://www.eleconomista.com.mx/politica/7-efectos-visibles-del-calentamiento-global-en-la-Ciudad-de-Mexico-20170603-0010.html
https://www.eleconomista.com.mx/politica/7-efectos-visibles-del-calentamiento-global-en-la-Ciudad-de-Mexico-20170603-0010.html
https://www.eleconomista.com.mx/politica/7-efectos-visibles-del-calentamiento-global-en-la-Ciudad-de-Mexico-20170603-0010.html
https://www.eleconomista.com.mx/politica/7-efectos-visibles-del-calentamiento-global-en-la-Ciudad-de-Mexico-20170603-0010.html
https://www.nytimes.com/es/2018/01/22/temperaturas-mundo-record-calor/
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Figures 11. Maximum Temperatures in the CDMX 2005-2018 

  

 
Informativereferences: 

http://www.eluniversal.com.mx/nacion/sociedad/ultim
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historia-asegura-la-unam 

 

 
 
The Bell curve showing how an increase in average 

temperatures leads to an increase in warm and 

extreme weather. Note also that this does not mean 

that there will be no more cold weather: these cold 

events will get rarer but will not go 

away.(Source: US Climate Change Science 

Program / Southwest Climate Change Network)  

 
 

General Adjustment of the 2005-2018 Tendency 
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http://www.eluniversal.com.mx/nacion/sociedad/ultimos-tres-anos-han-sido-los-mas-calurosos-de-la-historia-asegura-la-unam
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Figures 7. From Gaussian Mixing 
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Hastings Metropolis Algorithm 
Monte Carlo Markov Chain Methods (MCMC) are simulation methods to generate samples of 

distributions to Posteriori and estimate quantities of interest a posteriori. MCMC methods simulate values 

successively of a proposed density, whichdoesnotnecessarilyhaveto be akinto a posteriori density. 

They are notuniquetoBayesianinference, but can be usedtosimúlatevalues from a 

distributionfromwhichitisnoteasy to generatesamples. 

The stochastic simulation and a verycommonproblemaistosimulate a random variable with a 

givendistribution, over a space of states, althoughitis true thatthere are severalmethodsto do this, they are 

insufficient. 

So Nicolas Metropolis (1953) proposedanalgorithmwhichisbasedon the construction of a Markovchain, 

ergodicwhich has the distributionfunction as a stationarydistribution. 

Therefore, itisenoughtogenerate the Markovchain and from a certainmoment the values 

generatedwillhave a distributionvery similar to the givendistributionfunction. 

 
Figures 8. Using the Metropolis Algorithm - Markov Chain 

 

 
 

Bayesian Point Change Detection 
The Algorithm used to observe the biggest changes in the time series of maximum temperatures in the 

city of mexico, The points of change are abrupt variations in the generative parameters of a sequence of data the 

average obtained with the one used for the Normal setting. Although frequentist methods have produced online 

filtering and prediction techniques, a probability distribution of the length of the current "execution", or the time 

since the last change point, is calculated. The implementation is highly modular so that the algorithm can be 

applied to a variety of data types. 

 

Results with the means of each year from 2005 to 2018 

 
Figure 9. Detection of Temporal Bayesian Point Change with the darkest areas of greatest change and highest 

probability shown, coinciding from 2010 onwards. 
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Using the WRF to observe the annual temperature trends in the CDMX 
According to the long-term forecast established by climate analysis models, it is expected that Mexico 

City will achieve several degrees of increase in temperature for the coming years. It is very important to 

consider your annual analysis and establish growth patterns with the presence of new phenomena that can alter 

the conditions of the environment, resulting in an increase in temperature. An analysis of the temperature 

obtained in the last seven years and the present is proposed in order to observe the average annual temperature 

trends for the CDMX by using the WRF model (version 4.0). 

For the analysis, data from meteorological monitoring stations from government sources (SEDEMA, 

GIRPC) are considered, from which the maximum average annual values of temperatures for each of the 

stations were obtained. The WRF model is used to make annual projections based on the interpolation 

algorithms considering the atmospheric and land use characteristics within its arbitrary distribution in the 

behavior of the temperature and the study area. Obtaining as result the following maps of annual distribution of 

temperature. 

 

Figure9. Annual Maximum Temperature of the CDMX 2012 

 
 

Figure10. Annual Maximum Temperature of theCDMX 2013 
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Figure11. Annual Maximum Temperature of the CDMX 2014 

 
 

Figure12. Annual Maximum Temperature of the CDMX 2015 
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Figure13. Annual Maximum Temperature of the CDMX 2016 

 
 

Figure14. Annual Maximum Temperature of the CDMX 2017 

 
 

 

 

 

 

 

 

 

 

 



International Journal of Latest Research in Engineering and Technology (IJLRET) 

ISSN: 2454-5031  

www.ijlret.com || Volume 05 - Issue 06 || June 2019 || PP. 36-54 

www.ijlret.com                                                          53 | Page 

 
Figure15. Annual Maximum Temperature of the CDMX 2018 

 
 

Figure16. Annual Maximum Temperature of the CDMX 2019 

 
 

Results 
The products obtained by the WRF model show an increase in temperature in recent years. Relating the 

results with the table 9 described above we can see that the behavior of the values of temperature from 2012 to 

the present shows great similarity, showing with it the reliability that the WRF model can have when making 

forecast taking data from weather stations that are within the application area. 

Figure 14 referring to the year 2017 shows an atypical increase in temperature, which marks the 

beginning of the increase of the atypical temperature for the next years obtaining a percentage of 1 annual grade 

which is critical for the CDMX. Although the studies carried out with the model show trends of atypical 

increase, it gives a guideline to think about external factors that are altering the temperature values. Therefore, it 

is very important to continue conducting studies that allow us to give an adequate forecast of temperature 

behavior without forgetting to include in its variability scenarios external factors that cause anomalies of 
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increase in our measurements, such is the case of the heat islands phenomenon [17] that currently has become a 

big problem for large cities and reflect that CDMX is not exempt from this phenomenon. 

 

Conclusions 
According to the method demonstrated and the database of the CDMX official page, the new normal 

and extreme value distribution functions show the increase of the temperature in the city, we find new functions 

and when mixing the normal pdfs it gave us even more with greater veracity the result, so also with the WRF 

program gives us based on the methodology shown the increase of temperature in the CDMX. 
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