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Abstract: The methodology was used to obtain new normal probability and extreme value distribution 

functions through Bayesian inference and stochastic mixture of Gaussians. The proposed methodology is 

oriented to data with Gaussian behavior and consists of fitting the normal distribution function to the time series 

data of the porosity data, transit time curves and the curve of the gamma geophysical record, to find the 

probability of the Minimum or estimated values to find areas of interest, then we use Bayesian inference for 

normal data, in this case they are looking for behavior and trend with new Gaussian and extreme value 

functions. To validate the model we use the following statistical estimators, measurement of the root of the 

squared error, squared error, coefficient of determination and prediction approximation. 

Keywords: Bayesian Inference, Gaussian Mixing, Extreme Variable Distribution Functions. 

 

Introductión 
In the normal distribution, equation (1) one can calculate the probability that various values occur 

within certain ranges or intervals. However, the exact probability of a particular value within a continuous 

distribution, such as the normal distribution, is zero. This property distinguishes continuous variables, which are 

measured, from discrete variables, which are counted. As an example, time (in seconds) is measured and not 

counted. 

 

𝝋 𝒙 =
𝟏

𝝈 𝟐𝝅
𝒆
 −

 𝒙−𝝁 𝟐

𝟐𝒂𝟐
 
 

(1) 

 

 
Figure 1. Gaussian bell or Gaussian density function (Source: Internet) 

 
Now as we obtain the estimation parameters of a probability distribution function, we will use the 

Maximum Likelihood technique for the parameters to be estimated for the fit. The maximum likelihood method 

is a procedure to obtain a point estimator of a random variable. 

 

Let (X1,…, Xn) be a random sample with a distribution function f (x | θ). 

 

We define the likelihood function as: 
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𝑳 𝜽 𝑿𝟏, 𝑿𝟐, …𝑿𝒏 =   𝒇(𝑿𝒊|𝜽)

𝒏

𝒊=𝟏

 

 

(2) 

The estimator of θ in the maximum likelihood method is the value that maximizes the likelihood function. This 

value is called the maximum likelihood estimator EMV (θ). 

 

Now: 

𝑳 𝜽 𝑿𝟏, 𝑿𝟐, …𝑿𝒏 = 𝐥𝐧 𝑳 𝜽 𝑿𝟏, 𝑿𝟐, … 𝑿𝒏  =   𝒇(𝑿𝒊|𝜽)

𝒏

𝒊=𝟏

 
(3) 

 

 

Therefore, the maximum likelihood estimator is defined as: 

 

𝑬𝑴𝑽 𝜽 = 𝐦𝐚𝐱
𝜽∈𝜣

𝑳 𝜽 𝑿𝟏, 𝑿𝟐, … 𝑿𝒏  (4) 

 

Through the previous description, the parameters of a Normal Distribution are obtained, which are by doing the 

following: 

 

By the Maximum Likelihood Method, the likelihood function will be: 

 

𝑳 𝝁, 𝝈 =   
𝟏

𝝈 𝟐𝝅
 
𝑵

𝒆
 −

  𝒙−𝝁 𝟐

𝟐𝝈𝟐
 
 

(5) 

 

Applying logarithms and deriving with respect to the parameters to be estimated, we have a system of equations 

as follows: 

 
𝝏𝐥𝐨𝐠⁡(𝑳 𝝁, 𝝈 )

𝝏𝝁
=  
 𝒙

𝝈𝟐
−
𝑵𝝁

𝝈𝟐
= 𝟎 

 

(6) 

𝝏𝐥𝐨𝐠⁡(𝑳 𝝁, 𝝈 )

𝝏𝝈
=  −

𝑵

𝝈
+
  𝒙 − 𝝁 𝟐

𝝈𝟑
= 𝟎 

 

 

With the solution: 

 

𝝁 = 𝒙𝒚𝝈𝟐 =
𝟏

𝑵
  𝒙 − 𝝁 𝟐
𝑵

𝒊=𝟏

 

(7) 

 

With the first adjusted Normal we get 

 

𝑵𝒐𝒓𝒎𝒂𝒍(𝝁, 𝝈𝟐) (8) 

 
Now what we are looking for are extreme values that we want to know, the probability of occurrence 

so we use Bayesian Inference to find this probability with a new distribution function that will be part of the 

new functions of normal distribution and function of extreme variable or gev, our new unknown will be the 

mean, we can also proceed by observing the behavior for this case of a very important petrophysical variable: 

Porosity 

Porosity is an important measure since what we are looking for is the saturation of the fluid found in 

the formation or rock, there are various methods to find analytical methods such as formulas, through direct 

measurement in the oil well or with a direct petrophysical analysis of the core or a sample of the formation. 

 

Bayesian inference 
Bayesian inference is the process of analyzing statistical models with the incorporation of prior 

knowledge about the model or the model parameters. The root of such an inference is Bayes' theorem: 
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𝑷 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 𝑫𝒂𝒕𝒂 

=  
𝑷 𝑫𝒂𝒕𝒂 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 ∗ 𝑷(𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔)

𝑷(𝑫𝒂𝒕𝒂)
 

≈ 𝑭𝑽𝒆𝒓𝒐𝒔𝒊𝒎𝒊𝒍𝒊𝒕𝒖𝒅 ∗ 𝑷𝑫𝑭 𝑷𝒓𝒊𝒐𝒓𝒊 

(9) 

 

In this case we have the observations in the normal distribution form 

 

𝑿|𝜽 ~ 𝑵(𝜽, 𝝈𝟐) (10) 

 

Where the sigma is previously known and the PDF a Priori is 

 

𝜽 ~ 𝑵(𝝁, 𝝉𝟐) (11) 

 

Here mu and tao are also known, we are looking for n samples of the observed data, in the case of 

Ozone the maximum values or above 150 ppb, the Case of the particulate PM10 above 120 microgr / m3, the 

Case of PM2. 5 above 65 microgr / m3 and in the Case of Maximum Temperatures is the entire Data sample and 

thus We Obtain the New Normal Distribution Function with the new searched parameter, now for this new case 

the ones we are going to try to find is the zone with the lowest value of porosities with this stochastic 

approximation, as we proceed previously in previous works with Bayesian inference: 

 

𝜽|𝑿 ~ 𝑵𝑩 
𝝉𝟐

𝝈𝟐

𝒏
+ 𝝉𝟐

∗ 𝑿 + 

𝝈𝟐

𝒏

𝝈𝟐

𝒏
+ 𝝉𝟐

∗ 𝝁,

𝝈𝟐

𝒏
∗ 𝝉𝟐

𝝈𝟐

𝒏
+ 𝝉𝟐

  

(12) 

 

 

Now these data contain noise, there are values very close to zero, from the adjustment process then we 

proceed to adjust the petrophysical variable such as porosity and if it has an adjustment as such to the Gaussian 

is more favorable, we proceed to count the number of low values of the which we know could be, depending on 

the rock and the behavior of the Geophysical Record in this case which will be our mean τ and our σ as the 

standard deviation found with the adjustment, we apply a function to find the minimum value and we introduce 

a random Gaussian with that number of low values found the minimum as a vector, the σ the mean the number 

of values below the estimate from the read record, the mean μ, will be the mean of the complete porosity time 

series of the data and τ as the same σ 

Subsequently we apply a random noise with a Uniform Distribution with the length of the terms of the 

time series of the data, we now apply an adjustment with the Extreme Value Distribution Function (GEV) to 

find the parameters that fit even better these Data with the random noise and thus find the distribution functions 

that will give us the possible zones. 

 

𝑮𝑬𝑽( 𝝁, 𝝈, 𝒌) (13) 

 

A GEV is fitted with this uniform random distribution 

 

𝑮𝑬𝑽𝒂(𝑿𝒂, 𝝁, 𝝈, 𝒌𝟏) (14) 

 

And later a GEVA is generated (with the random parameters of GEVa) 

 

𝑮𝑬𝑽𝑨( 𝝁𝒂, 𝝈𝒂, 𝒌𝟏) (15) 

 

The extreme value functions or GEVs with the new parameters of the new extreme distribution 

functions see [14]: 

 

𝑮𝑬𝑽(  
𝝁𝒊
𝒏

𝒏

𝒊=𝟏

 ,
𝟏

𝒏 − 𝟏
 𝝈𝒊

𝒏−𝟏

𝒊=𝟏

 , 
𝒌𝒊
𝒏

𝒏

𝒊=𝟎

) 

 

(16) 

We have the following probability distribution functions, the Bayesian Normal, GEV of the data and 

the Random GEV, therefore they are 3 functions that we have so the first two sums of two probability 

distribution functions. 
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Table 2. GEV and Normal probability distribution functions 

GEV Normal 

𝐺𝐸𝑉( 𝜇, 𝜎, 𝑘) 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2) 

𝐺𝐸𝑉(𝑀𝑢𝑝𝑜𝑠𝑡𝑚𝑒𝑎𝑛 𝜇, 𝑆𝑖𝑔𝑚𝑎𝑆𝐷 𝜎, 𝑘2) 𝑁𝑜𝑟𝑚𝑎𝑙1(𝐸 𝐺𝐸𝑉1 ,  𝑉𝑎𝑟 𝐺𝐸𝑉1 ) 

𝐺𝐸𝑉(𝑀𝑢𝑝𝑜𝑠𝑡𝑚𝑒𝑎𝑛2 𝜇, 𝑆𝑖𝑔𝑚𝑎𝑆𝐷2 𝜎, 𝑘2) 𝑁𝑜𝑟𝑚𝑎𝑙2(𝐸 𝐺𝐸𝑉2 ,  𝑉𝑎𝑟 𝐺𝐸𝑉2 ) 

 

Adjustment Indicators 
Indicators of deviation of a group of data in relation to a model can be used to assess the goodness of fit 

between the two. Among the most common indicators are the following. Those that were used to determine the 

distribution that best fit the data. They are the mean square error (RMSE), mean square error (MSE), prediction 

precision (PA) and coefficient of determination (R2) Table 4 gives the equations for the adjustment indicators 

that have been used by Lu (2003) and Junninen et al. (2002). 

 

Table 3.  

Indicator Equation 

Root Mean Square Error (Raíz Cuadrada del 

Error) 
𝑹𝑴𝑺𝑬 =   

𝟏

𝑵 − 𝟏
   𝑷𝒊 − 𝑶𝒊 𝟐

𝑵

𝒊=𝟏

 

Mean Square Error (Error Cuadrado Principal) 

𝑴𝑺𝑬 =  
𝟏

𝑵
   𝑷𝒊 − 𝑶𝒊 𝟐

𝑵

𝒊=𝟏

 

Coefficiente of Determination (Coeficiente de 

Determinación) 𝑹𝟐 =  
  𝑷𝒊 − 𝑷  𝑶𝒊 − 𝑶 𝑵
𝒊=𝟏

𝑵𝑺𝒑𝑺𝒐
 

𝟐

 

Prediction Accuracy (Precisión de Predicción) 
𝑨𝑷 =

  𝑷𝒊 − 𝑶 𝟐𝑵
𝒊=𝟏

  𝑶𝒊 − 𝑶 𝟐𝑵
𝒊=𝟏

 

 
Notation: N = Number of Observations, Pi = Predictive Values, Oi = Observed Values, P = Average of 

Predicted Values, O = Average of Observed Values, Sp = Standard Deviation of Predicted Values, So = 

Standard Deviation of Values Observed. 

 
Table 4. Fit Indicators for Each Fitted Gaussian 

Gaussian 

Porosity 

RMSE MSE 𝑹𝟐 AP K S Test 

Well 4 0.1741 0.0303 0.9654 0.5067 5.2281e-04 

Well 2 0.3574 0.7947 0.8916 1.3250 0.0079 

Well 3 0.2244 0.0503 0.9467 0.8536 0.0 

Gaussian GR  RMSE MSE 𝑹𝟐 AP K S Test 

Well 3G 0.2442 0.0596 0.9518 0.4397 0.0 

 
Stochastic Method of Gaussian Mixtures 

The clustering model most closely related to statistics is the distribution-based model. The groups can 

then easily be defined as the objects that most likely belong to the same distribution. A convenient property of 

this approximation is that it is very similar to the way artificial data sets are generated: by random sampling of 

objects from a distribution. 

One of the most prominent methods is known as the Gaussian mixture model (used in the expectation-

maximization algorithm). Here, the data set is normally modeled with a fixed number (to avoid overfitting) of 

Gaussian distributions that is randomly initialized, and whose parameters are iteratively optimized to better 

classify the data set. This will converge to a local optimum, multiple runs can produce different results. To 

obtain a good grouping, the data are often assigned to the Gaussian distribution with the highest probability of 

belonging to such a grouping. 

Gaussian mixture models are a probabilistic model for representing normally distributed 

subpopulations within a general population. Mixture models in general do not require knowing which 

subpopulation a data point belongs to, allowing the model to automatically learn the subpopulations, using 

Expectation-Maximization (EM). 
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A Gaussian mixture model means that each data point is put (randomly) from one of the data classes C, 

with probability p_i of being drawn from class i, and each class is distributed as Gaussian with mean standard 

deviation μ_i and σ_i. Given a set of data extracted from said distribution, we seek to estimate these unknown 

parameters. 

The algorithm used here for estimation is EM (Expectation Maximization). In short, if we knew the 

class of each of the N input data points, we could separate them, and use Maximum Probability to estimate the 

parameters of each class. This is the step that makes (soft) selections of (unknown) classes for each of the data 

points based on the previous round of parameter estimates for each class. 

 
Figure 2. Basic equations of the EM Algorithms (Source:http://mccormickml.com/2014 )  

 

Results 
Well 4 - Porosity and Transit Time 

  
Inference 

  

http://mccormickml.com/2014
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Well 2 Apertura (Porosity case of Gaussian skewed to the right) 
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Inference 
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Well 3– Porosity and Transit Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Well Log 3 
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Result and comparing with the Record Porosity curve 

  
Figure 4. Porosity Curve marked in Red the Trend of Minimum Values 
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Well 3G – Gamma Curve and Transit Time 
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Figure 5. Gamma Histogram and Gaussian Mixture marked in Red the Trend of Minimum Average Values 

 

With its Sonica Curve 
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Results 

 
Figure 6. Histogram of Transit Time and Gaussian Mixture marked in Red the Trend of Average Minimum 

Values 

Explication 

 

 

 
It is observed that the PDF in blue continues the 

kernel of the Sand for this deposit gives greater 

probability of the values found in the GR and in 

dotted blue that of the Clay with certain trend values 

 

 
 

It is observed that the PDF in blue continues the 

kernel of the Sand for this deposit gives greater 

probability of the values found in the Sonic and in 

dotted blue that of the Clay with even more 

increased trend values 
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Figure 7. Record of Transit Time and Gamma marking the Trend of Average Minimum Values found. 

 

Normal Transformation for Skewed Data 
Sometimes one has the problem of making two samples comparable, that is, comparing the measured 

values of a sample with respect to its (relative) position in the distribution. 

(http://www.statistics4u.info/fundstat_eng/ee_ztransform.html) A frequently used aid is the z transform which 

converts the values of a sample into z scores: 

 

With 

 

𝑍𝑖 =
𝑥𝑖 − 𝜇

𝜎
 

 

The z transform is also called standardization or autoscaling. The z-scores are made comparable by 

measuring the observations in multiples of the standard deviation of that sample. The mean of a z-transformed 

sample is always zero. If the original distribution is normal, the z-transformed data belongs to a standard normal 

distribution (μ = 0, s = 1). 

The following example demonstrates the effect of data standardization. Suppose we have two normal 

distributions, one with a mean of 10.0 and a standard deviation of 30.0 (top left), the other with a mean of 200 

and a standard deviation of 20.0 (top right). Standardization of both data sets results in comparable distributions 

since both z-transformed distributions have a mean of 0.0 and a standard deviation of 1.0 

http://www.statistics4u.info/fundstat_eng/ee_ztransform.html
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Figure 6. Histogram and Normal Transformation of Data 

(http://www.statistics4u.info/fundstat_eng/ee_ztransform.html) 

 
In some published articles, you can read that the z-scores are normally distributed. This is incorrect: the 

z transform does not change the shape of the distribution, it only fits the mean and standard deviation. In 

pictorial terms, the distribution is simply shifted along the x-axis and expanded or compressed to achieve a zero 

mean and a standard deviation of 1.0. 

 
Figure 7. Histogram and Normal Transformation of Data 

http://www.geostatisticslessons.com/lessons/normalscore 

 

 

 

 

 

http://www.statistics4u.info/fundstat_eng/ee_ztransform.html
http://www.geostatisticslessons.com/lessons/normalscore
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Table 5. Now using the case of the porosity of the Well 2 Apertura. 
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It can be seen that the mean calculated from the previous adjustment is 0.30 approx. And in the transformation 

in both cases it is in Mean 0, the Z score of Matlab and the modified code below were used to generate the 

Gaussian data. 

 
Source code:  
% Data Transformation to a Gaussian 

% Modified by M.C Zenteno Jimenez Jose Roberto, 02/09/2020 

% Original 

% Geoffrey Goldman, 6/4/2015 

% https://la.mathworks.com/matlabcentral/fileexchange/50412-transform-data-

to-gaussian-distribution 

clc 

clear all 

close all 

 

% we generate data or a vector with the data to transform 

% P = P '; Vector with data 

% N = length (P); % length 

N=1000;  % number of data points 

data=zeros(1,N); 

data=normrnd(0,1,[1,N]);% a random normal of mean is generated 0 and SD of 

1 

 

figure(1) 

hist(data,50) 
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title('Data Histogram') 

xlabel('Sample Data') 

ylabel('Frequencies ') 

grid on 

 

% the vector is made linear over the data 

Pico=max(data);  

Minimo=min(data);  

lin_array=linspace(Minimo,Pico,N); 

% CPDF  

sdata=sort(data);  %  

data_uniforme=interp1(sdata,lin_array,data,'spline');   

% transformation to a uniform distribution 

% with interpolation to data in splines 

% Data is now equal to lin_array 

% normalizing data between 0 and 1 

u1_data=data_uniforme/(max(data_uniforme)-min(data_uniforme));   

u1_data=u1_data -min(u1_data); 

 

figure(2) 

hist(u1_data,50,'r') 

title('Histogram of the Data to a Uniform Distribution') 

xlabel('Sample Data') 

ylabel('Frequencies ') 

grid on 

 

% Gaussian pdf y cpdf 

pro2=0.1; 

lin2_array=-5:pro2:5; 

%Gaussian 

gauss_array=(1/(2*pi))^0.5*exp(-((lin2_array-mean(lin2_array)).^2)/2);  % 

area_1=sum(gauss_array)*pro2;  %  

cpdf_gauss=cumsum(gauss_array*pro2);  % cpdf 

gauss_data=interp1(cpdf_gauss,lin2_array,u1_data); 

 

figure(3) 

hist(gauss_data,50,'r') 

title('Histogram transformed to Gaussian') 

xlabel('Sample Data') 

ylabel('Frequencies ') 

grid on 

 
Conclusions 

According to the methodology that was now exposed the fourth case for Gaussian data and now finding 

the minimum values I have inferred the highest probability of those values that we are finding, we can see that it 

coincides with the values found as the case of  Well 3 where There is a Porosity already calculated within the 

registration result and the comparison with the minimum Porosity values are consistent and coincide with the 

result shown. If you know the values that must be found within your respective reservoir, both of Porosity and 

Gamma values or Transit Time with this proposed method, the result can be further emphasized, with the case 

of  Well 2 Apertura a normal case was shown in where Porosity is skewed and does not coincide from the 

beginning with the Gaussian Fit, therefore a normalization of the curve was made through the Z score statement 

and the exposed code, the original Source code and the modification are included, it was compared the two 

results giving a Good normalization, it must be said that if the same Bayesian Inference process is carried out 

with the normalization of the distribution functions obtained as the mean is zero and the Variance 1, it remains 

in the domain of the extreme distribution functions and their means and variances will have the effect on the 

skewed Gaussian and will approximate the approximate low values. 
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