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ABSTRACT : The heat transport at microscale is vital important in the field of micro-technology. In this 

paper heat transport in a two-dimensional thin plate based on single-phase-lagging (SPL) heat conduction model 

is investigated. The solution was obtained with the help of superposition techniques and solution structure 

theorem. The effect of internal heat source on temperature profile is studied by utilizing the solution structure 

theorem. The whole analysis is presented in dimensionless form. A numerical example of particular interest has 

been studied and discussed in details.  
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1. INTRODUCTION 

Cattaneo [1] and Vernotte [2] removed the deficiency [3]-[6] occurs in the classical heat conduction 

equation based on Fourier's law and independently proposed a modified version of heat conduction equation by 

adding a relaxation term to represent the lagging behavior of energy transport within the solid, which takes the 

form 
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where k  is the thermal conductivity of medium and 
q

 is a material property called the relaxation time. This 

model characterizes the combined diffusion and wave like behavior of heat conduction and predicts a finite 

speed 
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for heat propagation [7], where   is the density and bc  is the specific heat capacity. This model addresses 

short time scale effects over a spatial macroscale. Detailed reviews of thermal relaxation in wave theory of heat 

propagation were performed by Joseph and Preziosi [8], and Ozisik and Tzou [9]. The natural extension of CV 

model is 

( , ) ( , )qt k T t   q r r
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which is called the single-phase-lagging (SPL) heat conduction model [10]-[14]. According to SPL heat 

conduction model, there is a finite built-up time q for onset of heat flux at r , after a temperature gradient is 

imposed there i.e. q represents the time lag needed to establish the heat flux (the result) when a temperature 

gradient (the cause) is suddenly imposed. 

     Due to the complexity of the SPL model, the exact solution can be obtained only for specific initial 

and boundary conditions. The most popular solution methodology has resorted to either finite-difference or 

finite-element methods. Only a few simple cases can be solved analytically. In the literature most popular 

analytical solutions are the method of Laplace transformation [15], Fourier solution technique [16], Green’s 

function solution [17], and the integral equation method by Wu [18] for the solution of the hyperbolic heat 

conduction equation.                                            

      Recently, Lam and Fong [19] and Lam [20] conducted studies by employing the superposition 

technique along with solution structure theorems for the analysis of the CV hyperbolic heat conduction equation 

and one dimensional generalized heat conduction model. The temperature profile inside a one-dimensional 
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region was obtained in the form of a series solution. The method is relatively simple and requires only a basic 

background in applied mathematics. However, it was noted that solution structure theorems concentrated only 

on physical problems subjected to homogeneous boundary conditions. It was pointed out that there is a way to 

solve problems with non-homogeneous boundary conditions by performing appropriate functional 

transformations, namely by using auxiliary functions. 

     The purpose of this study is to apply solution structure theorems to study two dimensional SPL heat 

conduction in a finite plate subjected to homogeneous boundary conditions. The SPL heat conduction equation 

is solved using the superposition principle in conjunction with solution structure theorems. The outline of the 

paper is as follows. SPL heat conduction model is given in section 2. Section 3 deals solution of single-phase-

lagging heat conduction model. Section 4 contains result and discussion. Conclusion is given in section 6. 

 

2. 2D SPL HEAT CONDUCTION MODEL 
The combination of Fourier’s law of heat conduction 
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and law of conservation of energy [21] 
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provides the law of heat conduction as follows 
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where 
*g denotes the internal energy generation rate per unit volume inside the medium. In two dimension (6) 

can be written as 
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The above (7) is the classical diffusion model which governs thermal energy transport in solids. By 

introducing dimensionless parameters
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. Equation (7) can be 

expressed in dimensionless form as 
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where Fourier number 0F  represents dimensionless time. The CV constitutive relation (1) together with the 

energy conservation (5) gives the equation governing propagation of thermal energy 
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where   is the thermal diffusivity of the material and the relaxation time 
2

/
q

c  . On the left hand side of 

above equation, the second order time derivative term indicates that heat propagates as a wave with a 

characteristic speed given by (2) and the first order time derivative corresponds to a diffusive process, which 

damps spatially the heat wave. One can see that if energy travels at an infinite propagation speed (i.e. c ), 

then (9) reduces to the two dimensional parabolic heat conduction equation (based on Fourier law). The (9) can 

be expressed in dimensionless form as
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The above (10) can be written in simplified form as  
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In present study, an isotropic thin plate, 0 , 1,x y  with uniform thickness and constant thermo-

physical properties, is assumed. Initially, the thin plate is at temperature 2( , ,0) ,x y   which is a function of 

positions within the thin plate and rate of change in temperature is
3 . For time 0 0,F   the following boundary 

conditions will be considered 
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0 0(0, , ) 0, (1, , ) 0y F y F  
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0 0( ,0, ) 0, ( ,1, ) 0x F x F  
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3. SOLUTION 
The superposition technique can be applied to solve linear heat transfer problem with non-

homogeneous term [7, 22, 23]. With the application of superposition principle, the original problem (11) can be 

divided into three sub-problems by setting initial conditions and  0( , , )G x y F  as (1) 2 0,G    (2) 

3 0,G   and (3) 2 3 0   . Solution to these sub-problems is designated as
31 2, ,S S S . Therefore, the 

general solution of the original hyperbolic SPL heat conduction model is 1 2 3S S S S   .  

3.1. Solution Structure Theorem 

With the help of solution structure theorem [7], once the solution of sub-problem (1) is known, solution 

of sub-problems (2) and (3) can be obtained as follows 
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where  0 3, , ,x y F F be the solution of sub-problem (1). 

3.2. Solution of 2D-SPL Heat Conduction Model 

This section only devoted to the solution of the sub-problem (1) of SPL heat conduction model. For the 

given initial and boundary conditions, one can write solution to the governing equation by using Fourier series 

as 
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By substituting above (15) into (11) and after some manipulation we get following
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The Solution of above takes the form 

 , 0

, 0 , , 0 , , 0( ) ( ) ( )m nF
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where ,m n and ,m n  are defined as follows
 

, , , ,1, 1m n m n m n      2 2
, ; ,m n m n m nm n          . 

By substituting above (17) into (15) solution of the sub-problem (1) can be expressed as follows 
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Now to find the coefficients ,m na and ,m nb  we consider initial conditions 
2 0,   then , 0m nb  and 

,m na may be obtained as  

1
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Hence the solution of the problem is complete for , 0m n  . Since the solution contains Cosine terms at 

the end of (18), therefore for , 0m n  there is also a solution of the problem. For , 0m n  , (16) becomes 
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With the application of initial conditions, solution of above is  
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Thus the final solution of the two dimensional SPL heat conduction model is 
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4. RESULTS AND DISCUSSION 

This section presents complete solution of two dimensional SPL heat conduction model under different 

initial and boundary conditions. By utilizing the solution structure theorem, the effect of internal heat source on 

temperature profile has been studied and is given in case 2. The figures presented in this study, only the 

parameters whose values different from the reference value are indicated. 

Case 1:
2 3

0, ( ), 0Sin xy G    . 

In this case in the absence of internal heat source, effect of Fourier number has been observed. Figs. 1-

2 present the spatial temperature profile for two Fourier number
0

0.5F   and 1.0 .  The dimensionless 

temperature firstly increases with 0F as Fourier number is a measure of rate of heat conduction with the heat 

storage in a given volume element. Larger the Fourier number, deeper is the penetration of heat into the body 

over a given period of time.  

 

 

Fig. 1  Spatial temperature profile at
0

0.5F  . 
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Fig. 2 Spatial temperature profile at
0

2.0F  . 

 

 
 
 

Fig. 3 Spatial temperature profile at
0

1.0, 0.5, 5F     . 

 

 
 

Fig. 4 Spatial temperature profile at
0

1.0, 0.5, 15F     . 
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Fig. 5 Spatial temperature profile at 
0

1.0, 10, 0.1F     . 

 

  

 
 

Fig. 6 Spatial temperature profile at 
0

1.0, 10, 1.0F     . 

 

Case 2: 0

2 3
0, 0,

Fxy
G e e


 


    . 

     This case is devoted to the effect of internal heat source on the temperature profile. Heat source is 

modelled as time varying and spatially decaying. The spatial temperature profile for various absorption 

coefficients   at fixed Fourier number
0

1.0F  and laser pulse fall-time   0.5  is given in Figs. 3-4. Due 

to the spatially decaying nature of heat source, if we move towards end of both the spatial direction of thin plate, 

then the amount of heat entered into the body decreases and hence dimensionless temperature decreases with 

increase of absorption coefficient, as shown in Figs. 3-4.  

Figs. 5-6 present the effect of laser pulse fall-time on spatial temperature profile at fixed absorption 

coefficient and Fourier number. For fixed Fourier number, as laser pulse fall-time increases the amount of heat 

entered into the body decreases, due to which dimensional temperature into the body decreases. 

 

5. CONCLUSION 
The mathematical model describing heat transfer in a thin plate based on single-phase-lagging heat 

conduction is solved by superposition technique. The solution was obtained by utilizing superposition technique, 

structure theorem and Fourier series expansion. The effect of Fourier number, absorption coefficient and laser 
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pulse fall time parameter on temperature profile has been observed. The temperature increases with increase of 

Fourier number and laser pulse fall time parameter
 
but decreases with absorption coefficient.  

 This technique is very applicable for solving non-homogeneous partial differential equation under 

most generalized boundary conditions and may be applicable for solving the higher dimensional SPL heat 

conduction model of general body.
 

 

6. NOMENCLATURE 
c  Thermal wave propagation speed

 /m s  

b
c  Specific heat capacity  / .J kg K  

r
f  Reference heat flux  / *q q  

0
F  Fourier number  2

/ 2c t   

*g  Internal heat source  3
/W m  

g  Dimensionless heat source

 4 * /
r

g cf  

k  Thermal conductivity  / .W m K  

*
q  Dimensionless heat flux  /

r
fq  

r  Position vector 

t  Time  s  

T  Temperature  K  

T  Temperature gradient  /K m
 

*x  Spatial coordinate  m
 

x  Dimensionless spatial  

               coordinate  *
/ 2cx 

 
*y  Dimensionless spatial  

               coordinate  *
/ 2cy   

y  Spatial coordinate  m  

  Thermal diffusivity  2
/m s

 
*  Thermal diffusivity  1/ s

 
  Dimensionless laser pulse fall-

time parameter  *
2

q
   

  Dimensionless Temperature

 /
r

kcT f
 

*  Thermal diffusivity  1/ m
 

  Dimensionless absorption 

coefficient  *2 qc   

  Density  3
/kg m  

q  Phase-lag of heat flux  s
 

 

7. Acknowledgement 
Author is thankful to DST-CIMS, BHU for providing necessary facilities during the manuscript. 

REFERENCES 
[1] C. Cattaneo, Sur une forme de I'Equation de la chaleur elinant le paradox d'une propagation instantance, 

C. R. Acad. Sci.  247, 1958, 431-433. 

[2] M.P. Vernotte, Les paradoxes de la theorie continue de I’ equation de la chleur, C. R. Acad. Sci., 246, 

1958, 3154-3155. 

[3] D.Y. Tzou, Macro-to-microscale heat transfer: the lagging behavior (Washington: Taylor & Francis, 

1996). 

[4] D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. 

Phillpot, Nanoscale thermal transport, J. Appl. Phys., 93, 2003, 793-818. 

[5] A.A. Joshi, and A. Majumdar, Transient ballistic and diffusive phonon heat transport in thin films, J. 

Appl. Phys., 74, 1993, 31-39. 

[6] C.L. Tien, A. Majumdar, and F.M. Gerner, Microscale energy transport (Washington: Taylor & Francis, 

1998). 

[7] L.Q. Wang, Xu Zhou, and X. Wei, Heat conduction: mathematical models and analytical solutions 

(Berlin: Springer-Verlag, 2008). 

[8] D.D. Joseph, and L. Preziosi, Heat waves, Rev. Mod. Phys., 61, 1989, 41-73. 

[9] M.N. Ozisik, and D.Y. Tzou, On the wave theory in heat conduction, ASME J. Heat Transfer, 116(3), 

1994, 526-535. 

[10] D.Y. Tzou, Thermal shock phenomena under high rate response in solids, Annual Review of Heat 

Transfer, 4, 1992, 111-185. 



Analytical solution of 2D SPL heat conduction model 

www.ijlret.com                                                                       54 | Page 

[11] D.Y. Tzou, Shock wave formation around a moving heat in a solid with finite speed of heat propagation, 

Int. J. Heat Mass Transfer, 32, 1989, 1979-1987. 

[12] D.Y. Tzou, Thermal shock wave induced by a moving crack, ASME J. Heat Transfer, 112, 1990, 21-27. 

[13] D.Y. Tzou, Thermal shock waves induced by a moving crack-a heat flux formulation, Int. J. Heat Mass 

Transfer, 33, 1990, 877-885. 

[14] D.Y. Tzou, On thermal shock waves induced by a moving heat source, ASME J. Heat Transfer, 111, 

1989, 232-238. 

[15] G.F. Carey, and M. Tsai,  Hyperbolic heat transfer with reflection,  Numerical Heat Transfer, 5, 1982, 

309-327 

[16] A. Moosaie, Non-Fourier heat conduction in a finite medium subjected to arbitrary non-periodic surface 

disturbance, Int. Communication Heat Mass Transfer, 35, 2008, 376-383 

[17] M.N. Ozisik, and B. Vick, Propagation and reflection of thermal waves in a finite medium. Int. J Heat 

Mass Transfer, 27(10), 1984, 1845-1854 

[18] C.Y. Wu, Integral equation solution for hyperbolic heat conduction with surface radiation. Int. 

Communication Heat Mass Transfer,15, 1988, 365-374 

[19] T.T.  Lam, and E. Fong, Application of solution structure theorems to non-Fourier heat conduction 

problems: analytical approach, Int. J. Heat Mass Transfer, 54(23-24), 2011, 4796-4806. 

[20] T.T.  Lam, A unified solution of several heat conduction models, Int. J. Heat Mass Transfer, 56, 2013, 

653-666. 

[21] M.N. Ozisik, Heat conduction (New York: John Wiley & Sons, 1993). 

[22] L.Q. Wang, Solution structure theorem of hyperbolic heat conduction equation, Int. J. Heat Mass 

Transfer, 43(21), 2000, 365-373. 

[23] L. Wang, M. Xu, and X. Zhou, Well-posedness and solution structure theorem of dual-phase-lagging heat 

conduction, Int. J. Heat Mass Transfer, 44, 2001, 1659-1669. 


