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Abstract: Since that fateful and chilly dawn of April 15, 1912, the world has witnessed the construction of 

larger ships, some already dismantled or lying, solitary, in the darkness of the bottom of the oceans and others 

still in circulation. However, no other ship has become as famous and significant for popular naval and 

imaginary history as the Royal Mail Ship Titanic. The RMS Titanic joined the imaginary of the navy, literature 

and cinema. It fed the dreams and nightmares of generations, from the one from 1912 who was perplexed to 

receive the news of the disaster to the our present generation that has it in the ambivalence of an engineering feat 

of its time, as well as a fruit of the arrogance of its creators. 

Its history is known to all and its data used in many studies. It should be mentioned that these data are 

composed of records of various variables and of various natures. In addition, they are easily generalizable to 

several other situations. 

In this study the researcher will make use of the regression models. This model are one of the most 

important statistical tools in data analysis when the objective is to study relationships between variables, or more 

particularly, to analyze the influence that one or more variables (explanatory variables) may have on a variable 

of interest (response variable). 

The purpose of this study is to describe in detail the construction of this type of model using a dataset on 

the Titanic tragedy. 

Keywords: Titanic; Statistics; regression models.  

 

Introduction 
The RMS Titanic was a British passenger ship operated by the White Star Line and built by the Harland 

and Wolff shipyards in Belfast. The second vessel of the Olympic Class of ocean liners, after the RMS Olympic 

and followed by the HMHS Britannic, was designed by naval engineers Alexander Carlisle and Thomas 

Andrews. Its construction began in March 1909 and its launch into the sea took place in May 1911. The Titanic 

was thought to be the most luxurious and safest ship of its time, spawning legends that it was supposedly 

"unsinkable" (Pestana e Gageiro, 2014; Siena, 2019).  

Its history is known to all and its data used in many studies. It should be mentioned that these data are 

composed of records of various variables and of various natures. In addition, they are easily generalizable to 

several other situations. 

In this study the researcher will make use of the regression models. This model are one of the most 

important statistical tools in data analysis when the objective is to study relationships between variables, or more 

particularly, to analyze the influence that one or more variables (explanatory variables) may have on a variable 

of interest (response variable). The purpose of this study is to describe in detail the construction of this type of 

model using a dataset on the Titanic tragedy. 

Regression models are one of the most important statistical tools in data analysis when the objective is to 
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study relationships between variables, or more particularly, to analyze the influence that one or more variables 

(explanatory variables) may have on a variable of interest (response variable). 

For this, several types of models can be considered, and the type of response variable involved has 

special interest in the choice of this model. Data analysis with binary response, which admits only two 

outcomes, is one such situation. In this case, it is intended to study the occurrence of a "success" taking into 

account the other variables of interest. 

Thus, to describe a Logistic Regression model, in section 2, the methodology of an MLG will be 

introduced succinctly, introduced in the literature by Nelder and Wedderburn (1972) and Turkman and Silva 

(2000). Section 3 shows the particular case of the Logistic Regression Model. Section 4 describes in detail the 

construction of this type of model using a dataset on the Titanic tragedy. Its history is known by all and its data 

used in many studies, because it is a good set because it contains records of various variables and of various 

natures, in addition to that, it is easily generalizable to several other situations. There are different versions of 

this dataset available for free online, and the train set has been used. CVS available at the link "https://www. 

Kaggle. com/c/titanic/data". This contains data on 891 passengers and among other variables, contains one 

called " Survived " which takes the value 1 if the passenger survived or 0 otherwise. If we consider as an 

objective, to predict the survival of the individual taking into account, for example, the class where he traveled, 

sex, age, etc., we are faced with the intention of modeling a dichotomous response variable taking into account a 

set of explanatory variables, so that they are suitable for the adjustment of a logistic regression model (Afonso & 

Nunes. 2019). 

The choice of this data set is due to the fact that it contains records of several variables and of various 

natures, in addition to which, it is easily generalizable to several other situations. 

R statistical package will be used to support the resolution of the example. This is followed by the 

conclusion in section 5 and the bibliographical references in section 6. 

 

Regression models 
As already mentioned in this case, it is intended to study the occurrence of a "success" taking into 

account the other variables of interest. There are several practical situations in which this type of response 

appears (Pestana e Gageiro, 2014; Negas. 2021). Examples are: 

• the result of the diagnosis of a laboratory test − positive or negative; 

• the result of the inspection of a newly manufactured part − defective or non-defective; 

• a voter's opinion of voting for a particular candidate – favorable or unfavorable; 

• the result of a promotion of a chain of stores by sending each customer a coupon or discount code − used 

or unused; 

• Credit granting models, where from information offered by the applicant, the financial institution decides 

whether or not to release the credit. 

• the result of a knowledge test with a minimum grade to be approved − approved or not approved; 

 

This last example also illustrates situations in which only two possibilities are considered of interest for a 

continuous variable, values less than a reference value and values greater than or equal to that value. In these 

cases, a new binary variable is considered for these two possibilities. In this way, binary variables can be 

existing variables in a study or can be created if there is interest. 

Thus, when the objective of the study is to explain a binary response variable, linear regression, whose 

variables are continuous in nature, does not represent the most appropriate model. One of the particular cases of 

Generalized Linear Models (MLG) are models where the response variable presents only two categories or that 

has somehow been dichotomized, and the Logistic Regression model is the most popular of these models 

because it takes into account the fact that the response variable is categorical and the explanatory variables can 

be continuous or categorical (Pestana e Gageiro, 2014; Negas. 2021). 

 

Brief considerations on a generalized linear model 

Generalized linear models (MLG) constitute a class of statistical models and generalize classical linear 

models allowing the inclusion of many other models considered useful in statistical analysis. These have as 

main objective to study the relationship between variables, more particularly, to analyze the influence that one 

or more explanatory variables, independent or covariate, measured in individuals or objects, have on a variable 

of interest called response or dependent variable. 

Consider that there are n experimental units and that the measurements refer to p explanatory variables 

that are believed to explain part of the variability inherent in Y, the response variable. 

 

Description of the Generalized Linear Model 
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Generalized linear models, as already mentioned, are an extension of the classical linear model. 

Y = Xβ + ε 
where X is the n-× (p+1) matrix of model specification n, associated with a vector β = (β0, ... , βp)T of 

parameters and ε is a random error vector with distribution that is assumed Nn (0;  σ2I). 

These hypotheses imply that E(Y|X) = μ with μ = Xβ, that is, the expected value of the response variable 

is a linear function of the covariates. 

To specify a generalized linear model, three components are needed: the random component of the model 

(identifies the distribution of the response variable and can have any distribution belonging to the exponential 

family), the systematic component (consisting of a linear predictor that is a linear combination of the 

explanatory variables) and a linkage function (which combines the two previous components, establishing a 

relationship between the parameters of the distribution and the explanatory variables).  Like this:  

 

Componente Aleatória 

Given the vectors of covariates x′s, the variables Yi are (conditionally) independent and 

have distribution belonging to exponential family with mean value E(Yi|xi) = μi . 

Note that the response variable to be studied is binary thus, let Y be the response 

variable with Bernoulli distribution, and a sample y1, ... , yn of that distribution that can take 

only two values, assigning yi = 1 to the event of interest and yi = 0 to the complementary 

event, called "success" and "failure" respectively and whose probability function is given by  

𝑓(𝑦𝑖|𝑝𝑖) = 𝑝𝑖 𝑦𝑖
 
(1 − 𝑝𝑖)(1−𝑦𝑖), 𝑦𝑖 = 0,1; 𝑖 = 1, … , 𝑛                          (3.1) 

where pi is the unknown parameter, which means the probability of success, i.e. P(Yi = 1) = pi. Thus, the 

probability of failure is given by P(Yi = 0) = 1 − pi. 

It is intended to formulate a model for the probability of an object or individual characterized by a vector 

of explanatory variables (x) take the value 1, that is, to formulate a model for the mean value of the response 

variable Yi , which corresponds to P(Yi = 1|xi).  

 

Systematic or Structural Component 

Assume that xi1, xi2, . . . , xip represent the values of p explanatory variables referring to the i-th 

individual. The systematic component allows the elaboration of a linear model in the explanatory variables, 

called a linear predictor and represented by the vector of parameters η = (η1, η2, ... ηn)T where: 

 
𝒙𝒊   = (𝑥𝑖0, 𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝)  tendo-se  𝑥𝑖0  = 1.  The linear predictor can be matrix-represented by: 

𝜂  = 𝑋𝛽 

 
The systematic component is said to be continuous if the explanatory variables are continuous and 

categorized if the explanatory variables are discrete. When the systematic part of the model consists of both 

continuous and discrete covariates, the systematic component is said to be mixed. 

 

Connection Function 

The third component of an MLG, the binding function, is the link link  𝜂𝑖 = 𝑔(𝜇𝑖) which describes the 

functional relationship between the systematic component and the expected value of the random component, 

where 𝜇𝑖 represents the mean of the response variable and g to a differentiable monotone function. It is this 

function that allows to make the relation linear, that is: 

 
In this case, although there are other possible connection functions, the 𝑓𝑢𝑛çã𝑜 𝑙𝑜𝑔𝑖𝑡, given by 
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Methodology of Generalized Linear Models 
When trying to model data through an MLG, three essential steps must be followed: the formulation of 

the models, the adjustment of the models, and the selection and validation of the models (Afonso & Nunes. 

2019). In a first phase, three factors have to be taken into account: 

• the choice of the distribution for the response variable, and for this it is necessary to carefully examine 

the data, where a preliminary analysis of them is fundamental to make an adequate choice of the family 

of distributions to be considered; 

• the choice of covariates and appropriate formulation of the specification matrix, taking into account the 

specific problem under study and appropriate coding of the variables; 

• the choice of a linking function resulting from prior considerations of the problem at hand, intensive 

study of the data, ease of interpretation of the model, etc. 

 

The adjustment phase of the model or models goes through the estimation of the parameters, that is, the 

estimation of the coefficients β′s associated with the covariates, and of the dispersion parameter if it is present. 

At this point, it is important to estimate parameters that represent measures of adequacy of the estimated values, 

obtain confidence intervals and perform adjustment tests. 

Finally, the phase of selection and validation of models that aims to find submodels with a moderate 

number of parameters that is still appropriate to the data, detect relevant differences between the data and the 

predicted values, ascertain the existence of outliers, etc. In any case, the balance between suitability, parsimony 

and interpretation is important in selecting the best model (Pestana e Gageiro, 2014; Negas.2021). 

 

Logistic Regression Model 

Any regression is based on the calculation of the expected value of the response variable conditioned to 

the  values of the explanatory variables, usually represented by E(Y|x), where x represents the vector of the 

p covariates (Afonso & Nunes. 2019). When looking for a linear regression model it is because the data obey a 

relationship of this type, that is, linear, and it can be written that: 

𝐸(𝑌|𝐱) = 𝛽1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 

 
This quantity can take on any value in the set of real numbers. However, in the case under study, the 

response variable assumes only two values, not being a continuous variable so that this expected value can only 

vary between 0 and 1. To solve this problem, logistic regression rewrites the linear model so that the value of 

the response variable varies between 0 and 1, through the following equation 

                                                                            (3.1) 

It is usual to represent this quantity by π(xi), where the parameters designated by βj, j = 1,2, ... , p 

represent the effect of the explanatory variables on the response variable Y.In this case, the link link of the MLG 

(link function) that allows to restrict the values that vary between−∞ e +∞ at half-time [0,1] will be the 

transformation logit, which is the logarithm of the ratio between the probability of success and the probability of 

failure, given by  

𝑙𝑜𝑔𝑖𝑡 [𝑃(𝑌 = 1|𝐱 )] = ln [ 𝑃(𝑌𝑖 = 1|𝐱𝑖)]. 
                                   1-P(Yi=1|xi)                                                        (3.2) 

Its goal is to linearize the model by applying the logarithm. Note that by substituting in the logit 

expression 3.1 is obtained: 

 

𝑙𝑜𝑔𝑖𝑡 [𝑃(𝑌𝑖  = 1|𝐱𝑖)] = 𝛽1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝. 

 
Parameter estimation 𝛽 

In order to be able to apply the methodology of generalized linear models to a set of data, it is necessary, 

after the formulation of the model that is considered appropriate, to estimate the parameters involved in it and to 

make inferences about this model.      
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Being (𝑦𝑖, 𝒙𝒊), 𝑖  =  1,2, . . , 𝑛  the i-th observation where yi represents the value of the response and xi 

the vector of covariates. It is known that the response variable can only take two values, 0 and 1. At this stage, 

the objective is to determine the estimators of the unknown parameters β = (β0, ... , βp). It should be noted that, 

unlike a simple linear regression model, the logistic regression model does not allow us to obtain directly, 

through the method of least squares, estimates for these parameters.    Thus the maximum likelihood method 

(Paula, 2013; Pestana e Gageiro, 2014; Negas, 2021) is usually used. 

 

Quality of adjustment 

After obtaining the estimates of the regression coefficients, it is necessary to evaluate the quality of the 

adjusted model. The first step of this evaluation is to verify whether the estimated coefficients are significant, 

that is, whether there is a statistically significant association between the explanatory variables and the response 

variable. For this, the Wald test and the likelihood ratio test are used. 

 

_Wald Test 

The Wald test is used to test the null hypothesis that the parameter 𝛽𝑗, 𝑗 = 1, … , 𝑝 estimated is equal to 

zero. The test statistic and its distribution, under the validity of H0 are: 

 

                 𝛽𝑗       
W𝑗 =                    N(0.1) 
         Se(𝛽) 

 
Likelihood Ratio Test 

The likelihood ratio test is used to compare the quality of fit of two nested models, that is, models in 

which one has the subset of variables of the other model. It can also be said that this test evaluates the 

significance of the coefficients estimated simultaneously, that is, it verifies whether the estimated model is 

globally significant (Pestana e Gageiro, 2014; Negas, 2021). 

Given two nested models, Mp and Mq, with a number of variables p and q respectively, such that p < q, 

to compare the quality of fit of two models can be applied the likelihood ratio test, under the hypothesis that the 

q − p variables in the model do not present a significant increase in the quality of the model. 

 

Where ln (𝐿𝑀𝑝 (𝜷)) e ln (𝐿𝑀𝑞 (𝜷)) são respetivamente a função verosimilhança do modelo Mp e do 

modelo Mq. 

However, there are still other tests that prove to be very useful. This is the case of the Hosmer and 

Lemeshow test to evaluate in a general way the quality of the fit of a model, that is, it tests whether the model 

fits well to the data (Paula, 2013). 

 

Predictive capability of the mode 

When the adjustment objective of the Logistic regression model is prediction, it is necessary that the 

model has great power of discrimination, because the misclassification error has its consequences. The analysis 

of the power of discrimination is done through some performance measures such as sensitivity, specificity and 

the total percentage of correct answers.  McCullagh, and Nelder (1989) suggest two methods: ROC Curve and 

Contingency Tables. 
 

Roc Curves 

Be �̂� = 1  if an individual selected in the study population is classified as an event of interest, and �̂� = 0,  

otherwise. For this classification, it is necessary to establish a cutoff point that determines the probability of a 

given individual being classified in one of these classes. The most commonly used cutoff point is 0.5, which 

means that for an estimated value greater than or equal to 0.5 The individual will be classified in class 1, 

otherwise they will be classified in class 0. Through an ROC curve it is possible to choose a cut-off point that 

simultaneously maximizes sensitivity and specificity. This is represented by means of a graph allowing to study 

the variation of sensitivity and specificity for all possible cutoff points between 0 and 1. Generally, the best 

cutoff point is based on a combination of sensitivity and 1− specificity that most closely matches the upper-left 

corner of the graph. 

 

Contingency Tables 

The contingency table is, in this case, a 2 x 2 table for the chosen cut-off point, i.e. 

Table 1: Contingency table 

Classification Observed Values Total 
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 Class (0) Class (1)  

Class (0) n11 n12 n1 

Class (1) n21 n22 n2 

Total n1 n2  

Own Source 

Where the performance measures of the model are given by: 

● sensitivity:   𝑃(�̂� = 1|𝑌 = 1) =  𝑛22 

                                                                                                        𝑛.2, which represents the probability of correct 

classification of the event of interest; 

● specificity:   𝑃(�̂� = 0|𝑌 = 0) =  𝑛11 

                                                                                                       𝑛.1, which represents the probability of correct 

classification of the event of interest does not occur; 

● total percentage of correct answers: 𝑛 11+𝑛22 × 100. 
                         𝑛 

The Roc curve plot not only provides the best cutoff point, but the area under the curve ranging from 0 to 

1 is a measure of the model's ability to discriminate the values of the response variable, Y = 1, from the values of 

Y = 0. 

In Hosmer and Lemeshow (2013). is considered a general rule for evaluating the result of the area under 

the ROC curve: 

● If the área is equal to 0.5 there is no discrimination; 

● if this area is between 0.7 e 0.8 Discrimination is acceptable; 

● if the area is between 0.8 e 0.9 discrimination is good; 

● higher than 0.9 is good. 

 

Model Selection and Validation 

Faced with several MLGs candidates for a data set, it becomes necessary to determine the most 

appropriate model. The determination of the model is based on the selection and validation of models and 

comprises two important questions: "the suitability of the model?" and whether "among the adequate, which is 

better?" 

 

Model Selection 

The selection or comparison of models is the statistical procedure that determines which one should be 

chosen (Afonso & Nunes. 2019). This template should incorporate all the essential information, excluding the 

less relevant features, so that the important aspects are highlighted. That is, in selecting the appropriate model 

the balance between fit (the model should describe the data set as best as possible) and parsimony (the model 

should allow good predictions without containing unnecessary parameters) is very important. 

At this stage, the validation of the model must be carried out, that is, it must be ascertained whether the 

selected model is suitable. 

In practice there are usually a high number of variables that may be potentially important to explain the 

variability of the response variable. This implies the existence of several models with different combinations of 

the explanatory variables to explain the phenomenon in question, which makes the selection process more 

difficult and more time-consuming. To facilitate the selection process, the selection method is widely used 

stepwise. 

The stepwise model is an automatic procedure of selecting the variables in backward, forward or both 

direction. The forward direction starts from a null model and adds the variables, one at a time, that can be 

significant to explain the variability of the response variable. The null model is a simple model, with no 

covariates, with only one parameter representing the same mean value for all observations 𝑦𝑖. 
The backward steering case, unlike forward steering, starts from a complete model and checks at each 

step whether or not a variable can be eliminated from the model. The complete or saturated model is the largest 

model we have the possibility to consider. Given a sample with n observations, the maximum number of 

parameters for this model is equal to n, that is, one parameter for each observation. 

The method both stepwise is a combination of two methods (forward e backward). 

The phase of including or excluding the variable from the model is the phase of assessing the 

significance of the variables or comparing the models. For this, appropriate statistical measures are used for its 

evaluation. 
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Model Validation 
The deviance is a statistical measure that evaluates the significance of the estimated coefficients and is 

based on the likelihood ratio test (Pestana e Gageiro, 2014; Afonso & Nunes. 2019). 

Considering two models, the first with the variable present and the second without this variable, the 

likelihood ratio test, already described, allows us to affirm that, under the hypothesis of the model with the 

variable present being the true model, the deviance is given by 

                        𝐿(𝑚𝑜𝑑𝑒𝑙𝑜 𝑐𝑜𝑚 𝑢𝑚𝑎 𝑣𝑎𝑟𝑖á𝑣𝑒𝑙)        2           
𝐷 = −2𝑙𝑛 [ 

                                 𝑚𝑜𝑑𝑒𝑙𝑜 𝑠𝑎𝑡𝑢𝑟𝑎𝑑𝑜                ] ~𝜒𝑛−𝑞 

 
Da mesma forma, se o modelo sem essa variável for o modelo verdadeiro, a deviance é dada por: 
 
                        𝐿(𝑚𝑜𝑑𝑒𝑙𝑜 𝑐𝑜𝑚 𝑢𝑚𝑎 𝑣𝑎𝑟𝑖á𝑣𝑒𝑙)        2           
𝐷 = −2𝑙𝑛 [ 

                                 𝑚𝑜𝑑𝑒𝑙𝑜 𝑠𝑎𝑡𝑢𝑟𝑎𝑑𝑜                ] ~𝜒𝑛−𝑞 

 

Thus, the D value represents the deviation of the adjusted model from the saturated model. The closer the 

fitted model, μ,̂ is to the observed data, y, the lower the value of D. 

To assess the significance of an explanatory variable in the model, the difference between the deviance 

value of the model without the variable and the deviance value of the model with the variable is calculated. The 

value of this difference coincides with the likelihood ratio statistic, and this value is compared with the quantile 

of the Chi-Square distribution with q − p degrees of freedom. For a given level of significance, the hypothesis 

that q − p explanatory variables included in the model are not significant is rejected if the value of the likelihood 

ratio test statistic is greater than the probability quantile (1 − α ) of the Chi-Square distribution (Afonso & 

Nunes. 2019). 

Another measure used to evaluate the model is the Akaike Information Criterion, developed by Hirotugu 

Akaike and proposed in 1974 (Hosmer and Lemeshow. 2013). This measure is not a hypothesis test, it is a 

statistic that is based on the logarithm of likelihood and penalizes the model with many variables. The AIC 

measure is given by 

𝐴𝐼𝐶 = −2[log(𝐿) − 𝑘] 

 

where k is the number of parameters of the model, and L is the likelihood value for the estimated model. 

AIC is a relative measure of the information lost by fitting a given model. Unlike the deviance measure, 

which only compares nested models, it allows you to compare nested or non-nested models. The lower this 

value, the lower the information lost and, therefore, the better the adjustment of the model (Hosmer and 

Lemeshow. 2013). 

 

Residue Analysis is useful for evaluating the fit quality of a model with respect to choice of distribution, binding 

function, and linear predictor terms, as well as identifying observations that are poorly adjusted by the model 

The techniques used for residue analysis in generalized linear models are similar to those of the classical 

regression model. Thus, for the i − th observation, the residue is defined as the difference between the observed 

value yi and the value estimated by the model. 

One can calculate the Pearson Residue, the Deviance Residue. It should also be noted that for a proper 

analysis it is necessary to standardize them by their standard deviation. For more information see (Hosmer and 

Lemeshow. 2013; Pestana e Gageiro, 2014;  Afonso & Nunes. 2019). 

Evaluating the existence of influential Observations consists of verifying the dependence of the statistical 

model on the various observations that have been collected and adjusted. The Outlier is an observation far 

removed from the others in terms of the explanatory variables, and may or may not be influential. An influential 

observation is one whose elimination from the dataset results in substantial changes in certain aspects of the 

model (Paula. 2013; Pestana e Gageiro, 2014; Sharpe et al. 2018).  

 

Interpretation of regression coefficients 
Assuming the assumption that the model fits the data well and that the estimated coefficients are 

significant, it is necessary to interpret the values associated with the model coefficients. The interpretation of the 

coefficients of the regression model depends on the nature of the explanatory variables that can be categorical or 

continuous. In the case of the categorical explanatory variable it is necessary to create auxiliary variables, as 

already mentioned in the previous section, the so-called variables dummy. 
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Dichotomous independent variable 

An explanatory variable is categorical dichotomous if it can assume two possible values (Sharpe et al. 

2018). Considering that it takes the values 0 and 1, we can construct a contingency table, that is, 

 

 

 

Table 2: Contigency Table 

 X=1 x= 0 

Y=1 p1 p0 

Y=0 1- p1 1-p0 

Own source 

 

with the probabilities that are intended to be estimated, namely the probability in which the response 

variable can assume the value 1 taking into account the two values that the covariate can assume, i.e. 𝑝1 = 𝑃(𝑌 = 

1|𝑥 = 1) e 𝑝0 = 𝑃(𝑌 = 0|𝑥 = 0). The expression of the calculation of these probabilities may, taking into account 

the expression 3.1, be given by 

 
the possibility, or odds, may be defined as follows, 

 
Whe 

• The reason 𝑝1 represents the possibility of the response variable taking on the value 1 in 

1 − 𝑝1 

• relation to the value 0 when the explanatory variable is equal to 1; 

• The reazon  𝑝0 means the possibility of the response variable assuming value 1 in relation 

to 1−𝑝0 

  to the value 0 when the explanatory variable is equal to 0; 

 

 Applying the logit function, comes                                                                      ) = 𝛽1+ 𝛽2, 

𝑙𝑜𝑔𝑖𝑡 [𝑃(𝑌 = 1|𝐱 = 1) ] = ln (𝑝1                

                                                                                                        1 − 𝑝1                      In the same way, 

 

𝑙𝑜𝑔𝑖𝑡 [𝑃(𝑌 = 0|𝐱 = 0)  

] = ln (𝑝0                     ) = 𝛽1, 

                    1 − 𝑝0 

 
Thus the ratio between the possibilities is called the odds ratio (OR) and its expression is given by 

 

 
Which represents the risk of the response variable taking value 1 when the explanatory variable is also 1, 

in relation to the value 0. 

 

 Polychotomous independent variable 

When the explanatory variable is categorical with more than 2 categories, it is called k categories, then it 

is necessary to create k − 1 dummy variables. These new variables can take only the values 0 or 1. For 

convenience the k categories are numbered from 0 to k − 1, with category 0 being the reference class. The 

possible values 0 or 1 of the variables dummy means that if the characteristic of an object or individual belongs 

to class i (with i = 1, ... , k − 1), then to all dummy variables will correspond the value 0, except for the i- th 

class which will take the value 1. In the case of the reference class, if the characteristic of an object belongs to 

this class, then all k − 1 dummy variables will correspond to the value 0. 

Thus, for each category of the explanatory variable, the probability of the response variable assuming the 

value 1 in relation to the value 0 can be estimated. 
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For example, in the data that will be used there is a variable called embarked, which concerns the 

Boarding Gate, this can be transformed into a dummy variable, as follows: 

 

 

 

 

Table 3: Dummy variable 

Embarked Embarked Q Embarked S 

C = Cherbourg 0 0 

Q = Queenstown 0 1 

S = Southampton 1 0 

Own source 

 

The calculation and interpretation of the Odds Ratio value is similar to the case of the dichotomous 

variable. 

 

Variável independente contínua 

When a model contains a continuous independent variable, the interpretation of the corresponding 

estimated coefficient will be made based on the assumption of linearity between the response variable and the 

independent variable (Sharpe et al. 2018). It has already been mentioned that to establish this linear relationship 

the logit 3.2 function is used, in which case,  

 

 

 

Thus, the interpretation of the estimated coefficient is similar to that of the classical regression 

model. The coefficient β2 represents the change in the logarithm of the possibility by a unit of change 

in the value of the independent variable, x. 

By increasing one unit in the value of the variable, x, there will be a difference β2 in the 

logarithm of the possibility and if we increase k units, there will be a difference of kβ2 units. One can 

estimate the value of the odds ratio through the exponential of β2 or kβ2. 

 

An interval with (1 − α) 100% confidence for the eβ2 estimate is given by: 

 

Practical application 
As already mentioned will be used the set train.cvs available in the link " https://www. Kaggle. 

com/c/titanic/data". This contains data on 891 passengers and among other variables, contains one called 

"Survived" that takes the value 1 if the passenger survived or 0 otherwise. 

Using the R package, the glm function will be applied. There are several packages in R, with the "glm" 

function. For this application, the glm2 package was used.  
 

Data Preparation 

Before proceeding with the model adjustment, it is very important to prepare the data set for analysis. 

This step proves to be in many situations and, especially in real data, crucial to fit a good model and with good 

predictability. Thus, analyzing the available variables, the variable "PassengerId" for being only an index and 

the variable "Ticket" will not be considered. 

On the other hand, it is necessary to check for missing data. Through the function sapply, it is verified 

which variables have missing values. The Amelia package has a function that, through a graph, highlights the 

"missing values" called missmap. It was found that the variable "Cabin" has many missing values so it will not 

be considered either. Thus, another set of predictor variables was found to be considered: Survived, PcClasse, 

Sex, Age, SibSp, Parch, Fare, Embarked. 
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Image 1: Missing Values versus 

Observed  
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In this new group of data there were still missing values in the variables "Age" and "Embarked". In the 

first we chose to replace these missing values with the mean of the ages and in the second, as there were only 2 

unknown elements, the corresponding lines were removed. Thus, from 891 observations, 889 were considered. 

It remains to be taken some precaution with the categorical variables. 

So we have a new set of date.  Given the number of records available, it became possible to divide them 

into two groups, the training group, consisting of 800 observations, and the test group with the others. Note that 

the test group has about 10% of the available data. The training group will be used to adjust the model that will 

be tested with the test group. 
 

Model Estimation, Selection, and Validation 

To estimate the logistic regression model, R was used and the glm function was used. Note that the type 

of response variable, the binding function (logit) and the data used (in this case, the new data set called training) 

were indicated(Pestana e Gageiro, 2014; Sharpe et al. 2018). Like this: 

 
Image 2: Model adjustment 

Own 

source  
 

To view the result of this model, just use the function 𝑠𝑢𝑚𝑚𝑎𝑟𝑦 

 

Image 3: Summary 
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In this, first of all, it can be seen that the variables 𝑃𝑎𝑟𝑐ℎ , 𝐹𝑎𝑟𝑒 e 𝐸𝑚𝑏𝑎𝑟𝑘𝑒𝑑𝑄 e 𝐸𝑚𝑏𝑎𝑟𝑘𝑒𝑑𝑆 are not 

considered statistically significant. Of the statistically significant variables, Sexmale has the lowest p-value, 

which suggests a strong association of the passenger's sex with the likelihood of having survived. The fact that 

the coefficient associated with this variable is negative suggests that if all other variables have the same value, 

the male passenger (Sexmale) is less likely to have survived. Not forgetting that in the logit model the response 

variable is given by the ln(odds), comes that the saturated model would be given by: 

 

𝑙𝑛(𝑜𝑑𝑑𝑠) = 5.137 − 1.087𝑃𝑐𝑙𝑎ss − 2.757𝑆𝑒𝑥m𝑎𝑙𝑒 − 0.037𝐴𝑔𝑒 − 0.293𝑆𝑖𝑏𝑠𝑆𝑝 − 0.117𝑃𝑎𝑟𝑐ℎ 

+ 0.02𝐹𝑎𝑟𝑒 − 0.003𝐸𝑚𝑏𝑎𝑟𝑘𝑒𝑑𝑄 − 0.319𝐸𝑚𝑏𝑎𝑟𝑘𝑒𝑑𝑆 
 

The analyses of the parameters would be done as described in section 3, for example, as the variable 

Sexmale is a dummy variable, the fact that the passenger is male reduces the response variable (not forgetting 

that as it is the logistic regression reduces the logarithm of the response variable) by 2.75, while a unit 

incremented in age reduces this value by 0.037. 

The confint function allows you to calculate confidence intervals for the estimates of the coefficients. 

These are calculated at 95%. 

 

Getting: 

Image 4: Intervals 
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However, these estimates are not easy to interpret. A simpler way is to convert the estimates through the 

ratio of possibility or OR, i.e., by doing, 

One can now interpret the results more directly: for example, for every woman who was saved on the 

Titanic, 0.06 men were saved (or, more intuitively, for every 100 women who survived 6 men were saved), if all 

other variables have the same value. 

Doing:  >anova(modelo, test=”chisq”) one can see, through the difference between the null deviation 

and the residual deviation, how the adjusted model improves the null model (a model without covariates). The 

bigger this difference the better (Pestana e Gageiro, 2014; Sharpe et al. 2018; Afonso & Nunes. 2019). 

Analyzing the output, 
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Image 5: anova 
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it is also verified that the deviation decreases as the variables are added, one by one, to the model. It is 

also verified that adding the variables Pclass, Sex and Age significantly reduces the residual deviation. The other 

variables cause a smaller effect in the reduction of this deviation, even the variable SibSp, which although has a 

small p-value and can be considered significant. In this situation, a high p-value indicates that the inclusion of 

this variable in the model does not significantly increase the explained value of the response variable. On the 

other hand, it is intended that the inclusion of a variable causes a significant drop in the value of the deviation 

and the AIC. Thus, the model with only the variables Pclass, Sex, Age and SibSp seems to show good results 

and with fewer variables. 

McFadden's R2 value allows quantifying the fit of the model. Using the pscl package one can calculate 

this value, being in this case 0.334. 

It is now necessary to test the predictive capabilities of the response variable of the model found in a new 

data set, the test set. In R, defining the parameter type as "response" with probability of y being 1 given the 

covariate vector X, i.e. P (y = 1|X). If P (y = 1|X) > 0.5, then the answer is y = 1, otherwise y = 0. In other 

different situations, different decision thresholds may prove to be better options. An "Accuracy" value of 

approximately 0.84 was obtained for the test data for the variables, which is a good result. 

Finally, the ROC curve was plotted and the AUC (area under the curve) was calculated, which are the 

typical performance measurements when the response variable is binary. This curve is obtained by tracing the 

sensitivity and specificity at each cutoff point in pairs. This shows the relationship between the sensitivity and 

specificity of a test and can be used in deciding the best cutoff point. As a general rule, a model with good 

ability to discriminate values according to classes, should have an AUC closer to 1 (1 is ideal) than for 0.5 and a 

curve approaching the upper left corner of the chart. In this case, we obtained an AUC = 0.86 and an ROC curve 

near the upper left corner, that is, we can affirm that the model has a good discrimination capacity. In the 

following figure, the ROC curve for this data set is represented. 

 

Image 6: ROC Curve 

 

Own source 

It would be a case to say to anyone who was about to travel on the Titanic: Tell me your age and your 
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gender, who you travel with and what class you are going to, and I will tell you your destination! 

 

Conclusion 

Logistic regression is the most widely used method to model the binary response of data. Modeling a 

binary response variable using normal linear regression introduces bias in the estimation of parameters, and does 

not fulfill, for example, the assumption that a Standard linear model contains the response variable with normal 

distribution. This is because the binary response model is derived from the Bernoulli distribution. We have seen 

that the probability function of a Bernoulli is part of the exponential family, this family of distributions, which 

allows for easier estimates to determine. We have also seen that when it comes to estimating models based on 

the exponential family, the Generalized Linear Models algorithm is the best option.  

Thus, using this algorithm, the Logistic Regression model was adjusted to a group of data known to 

everyone (the data on the Titanic tragedy), and tried to make predictions to determine whether a given passenger 

would survive or not, depending on other variables, such as gender, the class where he traveled, etc. It was 

concluded that there was a model, which in relation to the saturated model (where all variables were included), 

one could consider only the variables classes where he traveled, sex, age and number of siblings/spouses who 

accompanied this individual, without the variability of the response variable, suffering major changes. 

We also tested a group of data not used in the estimation, which demonstrated good predictions and with 

the ability to discriminate in the intended response. 

It should also be noted that the characteristics of the data set used would easily be found in several areas 

of study, so the methodology used is generalized to many other situations in which the response variable is 

binary. 
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