
International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 11 - Issue 05 || May 2025 || PP. 07-12

www.ijlret.com 7 | Page

Enterprise Scaling Strategy: Building a Resilient Metabase

Architecture

Chetan Urkudkar
Senior Staff Software Development Engineer, Liveramp Inc

San Ramon, California, USA

Abstract: This study describes the construction of fault-tolerant and scalable solutions based on open-source

BI platforms under rapid growth in enterprise data volume and the evolution of business analytics. The

relevance of the work is determined by the forecasted doubling of the global BI-platform market by 2032 and

organizations’ growing need for continuous, embedded analytics with guaranteed response times, making the

combination of horizontal scaling, multi-tier caching, and a fault-tolerant storage layer critical. The novelty of

the research lies in the systematic integration of three directions: the evolution of Metabase’s built-in cache

mechanisms, advanced Kubernetes autoscaling practices (configuring HPA/VPA by the active_query_count

metric and applying GitOps patterns), and optimizations of storage engines (PostgreSQL 17, Snowflake

dynamic tables). The author’s empirical case study—covering end-to-end Metabase integration for over one

hundred organizations—confirms the practical effectiveness of the proposed approaches.

The main conclusions are: first, hybrid caching with differentiated TTLs by query type and predictive

invalidation significantly reduces storage load without sacrificing interactivity; second, fine-tuned Kubernetes

HPA/VPA based on Usage Analytics ensures stable replicas and optimal resource utilization; third, a

PostgreSQL shared-schema model combined with a Snowflake offload layer enables both tenant-count scaling

and strict data isolation, while reducing infrastructure costs by up to 50%.

This article will be helpful to engineering and DevOps teams responsible for building and maintaining

high-load BI solutions on open-source platforms.

Keywords: Metabase, scaling, caching, Kubernetes, multi-tenancy, performance, BI platforms, open-source.

Introduction
Modern enterprise analytics relies on BI platforms, as they transform exponentially growing operational

and behavioral data into formalized insights required for strategic decision-making. Market conditions illustrate

this demand: in 2024, the global BI segment was valued at USD 31.98 billion, and by 2032, it is projected to

double to USD 63.20 billion, corresponding to an 8.4% CAGR [1]. Growth is fueled by organizations’ shift

from discrete reports to continuous, in-workflow analytics, where not only insight depth but also speed of

delivery is crucial.

In this environment, open-source solutions gain prominence: they allow rapid adaptation of the analytics

stack to specific requirements without long-term licensing commitments. Empirical research shows that open-

source software is already present in 96% of corporate codebases and, according to [2], saves companies 3.5

times in development costs compared to a no-open-source scenario. However, democratized data access

exacerbates scaling challenges: query frequency and dataset volumes increase as the user base and data-model

complexity grow. Yet interactivity expectations remain stringent: user-facing analytics UIs demand response

times < 100ms, since delays over one second trigger cognitive switching and decrease engagement [3]. Thus, a

BI-platform architecture must meet latency and availability SLA metrics while optimizing total cost of

ownership. This study draws on the author’s practice—integrating Metabase end-to-end (from data source to

client dashboards) to demonstrate that a judicious combination of horizontal scaling, multi-tier caching, and a

fault-tolerant storage layer can satisfy these SLAs while significantly reducing operational expenses.

Materials and Methodology
To develop a substantiated Metabase scaling strategy, 14 key sources were analyzed: the Fortune

Business Insights report on BI-platform market size [1]; the SSRN study on open-source software value [2];

Tiny Bird’s review of UI-latency requirements [3]; Metabase release notes for versions 48, 50 and 53 detailing

cache-mechanism evolution and predictive cache layers [4–6]; Kubernetes v1.33 documentation on configurable

HPA tolerances [7]; Datadog’s cloud autoscaling guide [8]; PostgreSQL 17 release notes on replication and

indexing optimizations [9]; the 2024 CNCF survey on Helm and GitOps practices [10]; SuperTokens’ multi-

tenant architecture guide [11]; Pgedge’s JVM-heap tuning and VPA recommendations [12]; Snowflake

documentation on dynamic tables [13]; and Metabase’s built-in Usage Analytics module for performance

monitoring [14].

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 11 - Issue 05 || May 2025 || PP. 07-12

www.ijlret.com 8 | Page

Methodologically, the study combined:

● Comparative analysis of Metabase releases and cloud practices, correlating cache-mechanism changes

(TTL invalidation at question, dashboard, and source levels [5]), predictive caching, and Snowflake

integration speedups [6] with Kubernetes HPA/VPA capabilities [7, 8] and storage-engine improvements

(PostgreSQL 17, Snowflake 8.x) [9, 13].

● Systematic review of orchestration and infrastructure patterns, including horizontal autoscaling by the

active_query_count metric, JVM-heap optimization (Xmx ≈ 70% of cgroup limit), and GitOps

deployment via Helm for configuration consistency [7, 10, 12].

● Empirical case study of end-to-end Metabase integration for over 100 organizations, where horizontal

scaling, multi-tier caching, and a fault-tolerant storage layer met latency and availability SLAs while

substantially lowering TCO.

Results and Discussion
Studies of Metabase scalability remain fragmented: academic publications focus on generic BI buses,

while the evolution of specific open-source solutions is tracked mainly through release notes and community

reports. Nevertheless, these sources allow reconstruction of optimization trends, alignment with cloud

orchestration developments, and the growth of analytical database engines, providing a justified profile of the

platform’s current state and context for further research.

A chronological analysis of releases 48, 50, 52 and 53 shows Metabase’s gradual shift from UI

enhancements to deep engineering of the query path. Release 48 introduced the built-in Usage Analytics

collection, initiating a ―closed-loop‖ self-monitoring approach to identify cache bottlenecks [4] empirically.

Version 50 added granular cache-policy management at the question, dashboard, and source levels, enabling a

hybrid TTL-invalidation strategy [5]. In version 52 the team optimized the search ranger, tripling average search

result return speed compared to version 51 (―Think 3×!‖ in the changelog) [6]. Finally, release 53 implemented

pre-emptive caching and accelerated Snowflake synchronization by sixfold, directly targeting high-frequency

source-store access latency. These changes shift the performance bottleneck from application to storage

infrastructure and network layers.

In parallel, the Kubernetes community enhances vertical and horizontal autoscaling flexibility. The alpha

feature, Configurable Tolerance, introduced in v1.3, allows parameterization of HPA sensitivity, damping

replica-count oscillations without over-scaling [7]. For example, an HPA with a 5% scale-down tolerance and

zero scale-up tolerance is configured as shown in Fig. 1:

Fig. 1. HPA with a tolerance of 5% on scale-down, and no tolerance on scale-up [7]

Concurrently, Datadog reports a drop in median CPU utilization in client clusters from 16.33% to 15.9%,

indicating chronic over-provisioning and underscoring VPA’s role in reducing wasted resources [8]. For

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 11 - Issue 05 || May 2025 || PP. 07-12

www.ijlret.com 9 | Page

Metabase—with its JVM heap spikes during syncs and complex query builds—combining HPA tuning with

VPA recommendations yields a predictable platform where Usage Analytics metrics drive scaling policies.

Storage-engine progress cements these trends. PostgreSQL 17 introduced parallelized logical-replication

streams and streaming I/O for sequential reads, reducing major VACUUM cycle times and boosting concurrent-

write throughput [9]. In analytical scenarios, enhanced multilayer B-Tree indexing rules and ordered GROUP

BY eliminate unnecessary sorts. In the cloud DWH ecosystem, Snowflake’s release 8.28 adds incremental

FLATTEN updates in dynamic and materialized views, cutting compute costs for aggregates that Metabase

invokes tens of thousands of times daily [13]. Thus, the stack ―PostgreSQL 17 / Snowflake 8.x + Metabase 53 +

Kubernetes 1.33‖ forms a synergistic base where improved query plans, predictive caching, and adaptive

autoscaling minimize overhead while preserving interactive SLAs.

Horizontal scaling of Metabase in cloud clusters begins by distributing application instances across

multiple pods and enabling a horizontal autoscaler triggered by both CPU utilization and the active_query_count

metric. Kubernetes v1.33’s configurable tolerance for HPA lets teams set bespoke sensitivity thresholds;

practical tests show that lowering the default from 10% to 5% reduces replica-count fluctuations during evening

load peaks [7]. Nevertheless, Datadog continues to observe median CPU utilization of 15.9% in enterprise

clusters, indicating that economic scaling gains arise not from aggressive replica proliferation but from precise

threshold and limit calibration [8].

On the vertical axis, JVM tuning is critical. Further assurance comes from running the Vertical Pod

Autoscaler in recommendation-only mode: VPA suggests new resource requests based on daily memory-usage

dispersion. The forced application of recommendations occurs manually during scheduled releases, avoiding

unexpected restarts [9].

A GitOps pattern on Helm ensures configuration-delivery reliability. According to the 2024 CNCF

survey, 75% of organizations use Helm as their primary Kubernetes package manager, and 77% apply GitOps

principles to some degree [10]. Helm’s adoption surged from 56% in 2023 to 75% in 2024—a 33.9% annual

growth rate (Fig. 2).

Fig. 2. The Preferred Method For Packaging Kubernetes Applications [10]

In production, all Metabase environment variables—from MB_JETTY_MAXTHREADS to connection-

pool limits—are declaratively defined in values.yaml, and every change flows through pull requests, automated

testing, and progressive delivery. This process minimizes configuration drift between staging and production,

ensures environment reproducibility, and enables parameter-level rollbacks without downtime via rolling

updates. HPA + VPA strategies, strict JVM-heap control, and right-sized HikariCP create a self-sustaining

application layer capable of scaling Metabase for hundreds of tenants while maintaining latency SLAs and

avoiding compute-resource waste.

Multi-tenant Metabase installations impose dual requirements on the data layer: scaling to hundreds of

clients while enforcing strict data isolation. In practice, the most excellent infrastructure-cost savings come from

a shared-cluster PostgreSQL model, where each tenant has its own pattern; this configuration remains

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 11 - Issue 05 || May 2025 || PP. 07-12

www.ijlret.com 10 | Page

operationally manageable beyond one hundred tenants. Industry field data confirm this: companies moving from

single-tenant to shared-schema multi-tenancy report up to 50% direct infrastructure-cost reduction [11].

However, dedicated databases remain essential for clients with stringent regulatory requirements (e.g., HIPAA,

PCI-DSS), and a hybrid strategy—physically isolating sensitive tenants while sharing schemas for others—

balances security and cost savings.

Read-load growth is handled via cascading replication: the primary node handles writes, while a reader

pool distributes analytical SELECT queries. PostgreSQL 17’s ―failover-slot synchronization‖ and parallel

logical-replication application eliminate slot reinitialization on leader switchovers, reducing downtime to

network-retry levels [12]. Table 1 compares PostgreSQL versions.

Table 1. Comparison of different versions of PostgreSQL [12]

Feature PostgreSQL 15 PostgreSQL 16 PostgreSQL 17

Logical Replication Basic support Improved failover

recovery

Seamless failover

slots

Parallel Query

Support

Limited Better parallel joins Expanded parallel

aggregates

Incremental Sort Initial implementation More scenarios

supported

Optimized for large

datasets

WAL Compression Introduced Improved Faster and more

efficient

Indexing Basic deduplication BRIN enhancements Multi-column BRIN,

better B-Tree

Autovacuum Basic thresholds Smarter activity-

based tuning

Adaptive thresholds

Analytical workloads that scan terabyte-scale fact tables are offloaded to Snowflake. Materialized views

offer a classic but costly solution; since 2024, Snowflake’s dynamic tables support incremental updates: if

source data remains unchanged, the service does not spin up a warehouse, resulting in effectively zero compute

cost [13].

Tenant isolation is implemented at multiple levels. In PostgreSQL, row-level security is enabled for

shared tables with USING policies tied to session context, but this incurs measurable overhead. Therefore,

schema-per-tenant or database-per-tenant strategies remain preferable for intensive analytics with numerous

joins. TLS-encrypted traffic within private subnets and Metabase-level collection-scope access attestation

provides an additional security layer, minimizing the risk of cross-tenant data reads. The combination of fine-

grained segregation, low-lag replication, and analytical offload creates a resilient data layer capable of serving

over one hundred clients without SLA violations and with controlled cost.

Effective Metabase scaling requires quantitative control, so a baseline set of observables is first

established. Exporting to Prometheus—via the built-in /metrics endpoint—captures JVM heap usage

(jvm_heap_used_bytes), connection-pool activity (db_pool_active), active query count

(metabase_active_query_count), and Jetty-thread parameters.

For in-system analysis, Usage Analytics auto-constructs three key dashboards. The ―Performance

overview‖ aggregates 50th and 90th percentile query times, returned row counts, and load distribution by user

[14]; ―Content with cobwebs‖ highlights questions and dashboards without views in a defined period; and a

dedicated ―Query log‖ shows running_time_seconds and cache_hit flags for each query.

Cleaning ―cold‖ content reduces sync and cache-storage overhead. The ―Clear out unused items‖ feature

in the collections UI deletes objects not accessed, e.g., for over three months; Metabase Housekeeping

recommends pre-segmentation by user groups to avoid removing niche but essential assets.

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 11 - Issue 05 || May 2025 || PP. 07-12

www.ijlret.com 11 | Page

To maintain these effects, the operations team follows a three-granularity review regimen. Weekly, the

Performance overview is examined, and all questions missing cache hits are tagged ―optimize.‖ Monthly,

Content with cobwebs generates candidates for deletion; unused objects are moved to the trash. The Query log

is aggregated quarterly by query_source to identify automated subscriptions or dashboard auto-refreshes that

strain data sources, after which content owners receive recommendations to reduce refresh frequency. This

cyclic procedure ties technical metrics to housekeeping actions and maintains a sustainable ―signal-to-

infrastructure-cost‖ ratio as tenant counts grow.

The author implemented end-to-end Metabase integration across the analytics stack and scaled the

platform using the above mentioned strategies. The initial phase minimized processed data volumes: dashboards

applied preset filters on time ranges and key dimensions, and limited the number of visualizations so that each

page issued only the necessary queries. Next, a multi-tier caching mechanism was deployed in the Performance

admin panel: short-TTL fixed caching for lightweight queries, scheduled invalidation for heavy queries during

low-load windows, and dynamic TTL based on average execution time for intermediate queries, yielding

significant latency reductions without increased RAM usage.

After stabilizing baseline performance, Usage Analytics was enabled to detail which users ran which

queries, how often, the execution time, and cache efficacy. This analysis underpinned further offload: the most

demanded, resource-intensive queries were moved into materialized views in the warehouse, and targeted

indexes were created in PostgreSQL for hot tables and columns, reducing disk I/O and speeding aggregations.

Simultaneously, content audits classified unused queries and dashboards as ―cold,‖ which were then deleted or

archived to prevent excess database load and cache growth.

The combination of restrictive filters, hierarchical caching, usage analytics, and targeted storage

optimization maintained interactive response times under exponential load growth typical of multi-tenant

environments. Moreover, systematic removal of stale assets and focused indexation delivered measurable

reductions in compute and cost overhead for Metabase, validating the practical applicability of the methods set

out herein.

By employing these methods—from query-volume minimization and visualization limits to multi-tier

caching, active usage monitoring, and focused index/materialized-view optimization—we establish a continuous

optimization chain capable of adapting to dynamic load and operational conditions. This approach upholds

interactive SLA metrics and lays the foundation for scaling Metabase in multi-client settings with minimal

operational expense. Moving from ad hoc tactical tweaks to a comprehensive performance-management strategy

builds a solid bridge to the generalized conclusions and recommendations presented in the Conclusion.

Conclusion
The comprehensive Metabase scaling strategy demonstrates that combining thoughtful input-query

filtering, horizontal and vertical autoscaling, multi-tier caching, and targeted storage optimization yields a

resilient architecture capable of withstanding exponential load growth in multi-tenant environments. Applying

preliminary constraints on time ranges and key dimensions significantly reduces processed data volumes,

sustaining interactive response times below 100ms and thus meeting stringent latency SLAs.

Next, multi-tier caching—split into fixed TTL for lightweight queries, scheduled invalidation for heavy

queries, and dynamic TTL for intermediate cases—alleviates storage-layer load without excessive RAM

consumption. Integrating Usage Analytics enables granular user-behavior insights and cache-layer efficiency

assessments, redirecting the most resource-intensive and frequent queries into materialized views and indexes—

thereby offloading transactional-DB load. Coupled with PostgreSQL 17 and Snowflake 8.x capabilities in

parallel replication, adaptive indexing, and incremental aggregate updates, this minimizes disk operations and

compute costs.

Leveraging Kubernetes v1.33 with fine-tuned HPA and VPA driven by JVM and active-query metrics

creates a predictable scaling system that flexibly addresses peak loads without over-replication. For multi-tenant

setups, a shared-cluster PostgreSQL model with per-tenant schemas cuts direct infrastructure costs by up to 50%

while maintaining manageability; when regulatory isolation is required, sensitive tenants can be physically

segregated under a hybrid strategy. Master-slave replication with parallel slot application eliminates failover

downtime, and Snowflake dynamic tables prevent unnecessary compute expense when source data is

unchanged. Finally, a GitOps-based Helm progressive-delivery approach ensures configuration uniformity,

rapid rollback without downtime, and environment-drift control.

Thus, transitioning from disparate tactical settings to an end-to-end optimization chain—from initial data

volume reduction through continuous monitoring, cold-content cleanup, and hot-query tuning—builds the

foundation for a scalable, fault-tolerant, and cost-effective Metabase platform. This confirms the practical

applicability of the proposed methods and establishes a basis for their extension and adaptation in future

research and industrial deployments.

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 11 - Issue 05 || May 2025 || PP. 07-12

www.ijlret.com 12 | Page

References
[1]. ―Business Intelligence Market Leaders, Size, Share,‖ Fortune Business Insights, Apr. 14, 2025.

https://www.fortunebusinessinsights.com/business-intelligence-bi-market-103742 (accessed Apr. 15,

2025).

[2]. M. Hoffmann, F. Nagle, and Y. Zhou, ―The Value of Open Source Software,‖ SSRN Electronic Journal,

2024, doi: https://doi.org/10.2139/ssrn.4693148.

[3]. C. Archer, ―User-Facing Analytics: Examples, Use Cases, and Resources,‖ Tiny Bird, Apr. 23, 2024—

https://www.tinybird.co/blog-posts/user-facing-analytics (accessed Apr. 06, 2025).

[4]. ―Metabase 48,‖ Metabase, 2024. https://www.metabase.com/releases/metabase-48 (accessed Apr. 07,

2025).

[5]. ―Metabase 50,‖ Metabase, 2024. https://www.metabase.com/releases/metabase-50 (accessed Apr. 07,

2025).

[6]. ―Releases | What’s New in Metabase,‖ Metabase, 2025—https://www.metabase.com/releases (accessed

Apr. 07, 2025).

[7]. ―Kubernetes v1.33,‖ Kubernetes, Apr. 28, 2025. https://kubernetes.io/blog/2025/04/28/kubernetes-v1-33-

hpa-configurable-tolerance (accessed May 01, 2025).

[8]. N. Thomson, ―Kubernetes autoscaling guide: determine which solution is right for your use case,‖

Datadog, Nov. 12, 2024. https://www.datadoghq.com/blog/kubernetes-autoscaling-datadog/ (accessed

Apr. 09, 2025).

[9]. ―PostgreSQL: Release Notes,‖ PostgreSQL, Sep. 06, 2024. https://www.postgresql.org/docs/release/17.0/

(accessed Apr. 10, 2025).

[10]. S. Hendrick, ―Valerie Silverthorne, Cloud Native Computing Foundation Cloud Native 2024

Approaching a Decade of Code, Cloud, and Change,‖ 2025. Accessed: Apr. 12, 2025. [Online].

Available: https://www.cncf.io/wp-content/uploads/2025/04/cncf_annual_survey24_031225a.pdf

[11]. ―Multi-Tenant Architecture: Benefits, Practices & Implementation,‖ SuperTokens, Feb. 18, 2025.

https://supertokens.com/blog/multi-tenant-architecture (accessed May 05, 2025).

[12]. I. Ahmed, ―PostgreSQL Performance Tuning,‖ Pgedge, 2025. https://www.pgedge.com/blog/postgresql-

performance-tuning (accessed Apr. 15, 2025).

[13]. ―Understanding cost for dynamic tables,‖ Snowflake. https://docs.snowflake.com/en/user-guide/dynamic-

tables-cost (accessed Apr. 15, 2025).

[14]. ―Usage analytics,‖ Metabase, 2023. https://www.metabase.com/docs/latest/usage-and-performance-

tools/usage-analytics (accessed Apr. 20, 2025).

https://www.fortunebusinessinsights.com/business-intelligence-bi-market-103742
https://www.fortunebusinessinsights.com/business-intelligence-bi-market-103742
https://doi.org/10.2139/ssrn.4693148
https://doi.org/10.2139/ssrn.4693148
https://doi.org/10.2139/ssrn.4693148
https://www.tinybird.co/blog-posts/user-facing-analytics
https://www.metabase.com/releases/metabase-48
https://www.metabase.com/releases/metabase-48
https://www.metabase.com/releases/metabase-48
https://www.metabase.com/releases/metabase-50
https://www.metabase.com/releases/metabase-50
https://www.metabase.com/releases/metabase-50
https://www.metabase.com/releases
https://kubernetes.io/blog/2025/04/28/kubernetes-v1-33-hpa-configurable-tolerance
https://kubernetes.io/blog/2025/04/28/kubernetes-v1-33-hpa-configurable-tolerance
https://kubernetes.io/blog/2025/04/28/kubernetes-v1-33-hpa-configurable-tolerance
https://www.datadoghq.com/blog/kubernetes-autoscaling-datadog/
https://www.datadoghq.com/blog/kubernetes-autoscaling-datadog/
https://www.datadoghq.com/blog/kubernetes-autoscaling-datadog/
https://www.postgresql.org/docs/release/17.0/
https://www.postgresql.org/docs/release/17.0/
https://www.postgresql.org/docs/release/17.0/
https://www.cncf.io/wp-content/uploads/2025/04/cncf_annual_survey24_031225a.pdf
https://www.cncf.io/wp-content/uploads/2025/04/cncf_annual_survey24_031225a.pdf
https://www.cncf.io/wp-content/uploads/2025/04/cncf_annual_survey24_031225a.pdf
https://supertokens.com/blog/multi-tenant-architecture
https://supertokens.com/blog/multi-tenant-architecture
https://www.pgedge.com/blog/postgresql-performance-tuning
https://www.pgedge.com/blog/postgresql-performance-tuning
https://www.pgedge.com/blog/postgresql-performance-tuning
https://docs.snowflake.com/en/user-guide/dynamic-tables-cost
https://docs.snowflake.com/en/user-guide/dynamic-tables-cost
https://docs.snowflake.com/en/user-guide/dynamic-tables-cost
https://www.metabase.com/docs/latest/usage-and-performance-tools/usage-analytics
https://www.metabase.com/docs/latest/usage-and-performance-tools/usage-analytics
https://www.metabase.com/docs/latest/usage-and-performance-tools/usage-analytics

