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Abstract: Within the scope of this study, a systematization and comparative analysis of various sharding 

strategies applicable to distributed vector stores have been carried out. The objective of the work is to analyze 

strategies for the joint use of scalable vector databases. The methodological approach is based on a review and 

synthesis of advances in the architectures of distributed vector databases and their partitioning techniques as 

reflected in scientific publications and technical reports. To assess the effectiveness of each strategy, a 

comparative analysis was conducted according to criteria such as access latency (latency), throughput 

(throughput), search accuracy (recall/precision), and load balancing (load balancing). The scientific novelty of 

the study lies in the proposal of a multi-criteria framework decision model that takes into account the 

heterogeneity and variability of workloads in modern AI systems. Practical conclusions demonstrate that hybrid 

strategies providing an adaptive combination of data partitioning with query processing parallelism exhibit the 

greatest versatility and efficiency when operating with highly loaded vector databases. The results obtained are 

of significant interest to data engineering practitioners, scalable system architects, and researchers in the fields 

of data management and artificial intelligence. 

Keywords: vector database, sharding, scalability, approximate nearest neighbor search (ANN), high-

dimensional data, distributed systems, load balancing, query parallelism, data partitioning, generative AI 

 

1. Introduction 
With the deepening integration of generative artificial intelligence systems into business processes, a 

fundamental restructuring of the corporate data management paradigm is underway. The global artificial 

intelligence (AI) market volume in 2025 is estimated at 757,58 billion US dollars, and by 2034 it is forecast to 

reach approximately 3680,47 billion US dollars, increasing at an average of 19,20% from 2025 to 2034. The 

North American AI market volume in 2024 exceeded 235,63 billion US dollars and is projected to grow at an 

average of 19,22% over the forecast period. Market volumes and forecasts are based on revenue (in 

millions/billions of US dollars) using 2024 as the base year [1]. The presented data testify to the scale and 

inevitability of this transition. At the same time, a key challenge remains the fact that a significant percentage of 

all corporate data continues to remain in the shadow of analytics — they are represented in unstructured or 

semi-structured forms (text documents, images, audio recordings) and are simply not utilized in decision-

making. 

To utilize such data sets in semantic search tasks and hybrid Retrieval-Augmented Generation systems, it 

is necessary to convert the original artifacts into vector embeddings and store them in specialized repositories 

(vector databases). The industrial significance of this field is confirmed by the high assessments from leading 

analytical agencies regarding solutions that optimize the handling of complex unstructured data. 

However, as volumes reach billions and trillions of vector records, a single database node begins to 

experience load, leading to increased response times and performance degradation. Thus, the scientific 

community and engineering teams face the task: to develop and systematize effective methods of horizontal 

scaling (sharding) of vector databases. 

The objective of the work is an analysis of strategies for the joint utilization of scalable vector databases. 

The scientific novelty of the research lies in the proposal of a multi-criteria framework decision-making 

model that accounts for the heterogeneity and variability of workloads in modern AI systems. 

The author’s hypothesis asserts that hybrid sharding schemes, combining data partitioning methods and 

parallel query processing, are capable of providing higher throughput and fault tolerance for heterogeneous 

workloads compared to classical static strategies. 

 

2. Materials and Methods 
In recent years, the growth of high-dimensional vector data volumes in machine learning applications and 

similarity search has rendered the development of specialized DBMS critically important. Wang J. et al. [2] 

present Milvus — a system optimized for vector storage and search, in which sharding is implemented through 

static partitioning of the feature space with dynamic load balancing at the node level via monitoring of fill 

metrics and latencies. Pan J. J. et al. [3], in a review, classify approaches to sharding in vector DBMS based on 
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index structures: LSH-based hashing, clustering via product quantization (PQ), and graph structures (HNSW), 

noting that each method imposes specific requirements on shard design and inter-node interaction. Han Y. et al. 

[10] emphasize that established data distribution mechanisms from relational DBMS (shared-nothing, shared-

disk) require significant adaptation due to high dimensionality and the demand for low-latency queries. 

Sharding and scalability of distributed DBMS are considered from various perspectives. Abdelhafiz B. 

M. and Elhadef M. [8] propose the classical approach: static key-based hashing with replication to ensure fault 

tolerance and uniform data distribution across shards. Yin B. et al. [9] employ machine learning methods for 

dynamic shard redistribution in blockchain networks, where load and node availability exhibit high variability; 

their learned sharding optimizes network traffic and reduces recom­munication. Sundarakumar M. R. et al. [4] 

analyze a wide spectrum of DBMS tuning techniques (cache size, degree of parallelism, split thresholds) to 

enhance throughput under a large number of concurrent connections. Shafiq D. A. et al. [11] summarize load 

balancing methods in cloud environments: from dynamic instance scaling to rerouting query streams between 

replicas. It is noted that the transition to a multimodel DBMS with vector support intensifies resource 

competition, and balancing must consider not only data volume but also the nature of vector operations. 

Algorithmic approaches to distributed processing of similarity queries and clustering play a key role in 

sharding. Moutafis P. et al. [6] develop distributed algorithms for group KNN queries, in which boundary-region 

data are replicated across adjacent shards, and the computational workflow is constructed according to the 

MapReduce model to minimize inter-node communications. Zhang C. et al. [7] propose a road-network 

partitioning method based on spectral clustering, enabling efficient scaling of graph-based traffic-prediction 

models on large hyperconnected urban-space graphs. Lin H. et al. [5] synthesize practices in distributed training 

of graph neural networks, categorizing them into data-parallel and model-parallel strategies, with an emphasis 

on graph-partitioning quality (METIS, connectivity metrics) to reduce synchronization overhead. Miraftabzadeh 

S. M. et al. [12] compare K-means, DBSCAN, and hierarchical clustering, demonstrating that the choice of 

method affects cluster compactness and homogeneity, and thus the effectiveness of subsequent sharding in a 

distributed environment. 

The market report by Precedence Research [1] estimates the size of the global artificial intelligence 

market, including solutions for storage and processing of vector representations, with a forecasted CAGR of 

39% through 2034, underscoring the commercial interest in reliable and scalable sharding architectures. 

Thus, two principal tensions can be discerned in the literature: on the one hand, classical static hash-

based sharding methods [8] versus dynamic, ―learnable‖ sharding [9], and on the other, the choice between 

clustering-based and graph-based partitioning algorithms [6, 7]. Despite the diversity of approaches, the 

interaction of sharding mechanisms with specific vector-database indexes (IVF, HNSW, PQ) remains 

underexplored, as do issues of adaptive re-partitioning of ―hot‖ shards in real time. Inter-datacenter sharding, 

GPU acceleration, and security in distributed vector storage are also insufficiently addressed, opening avenues 

for further research. 

 

3. Results and Discussion 
Analysis of modern sharding architectures in distributed vector stores reveals two key conceptual models 

— data sharding and query parallelism — and in practical systems, these approaches are often combined in 

hybrid configurations that optimize the balance between response latency, infrastructure cost, and maintenance 

complexity. 

Data partitioning remains the most widespread methodology: the original array of vectors is divided into 

disjoint blocks (shards), each served by its cluster node. Upon receiving a search query, it is dispatched to all 

shards simultaneously, and the system coordinator aggregates partial results to form the final answer. In this 

scenario, the choice of the sharding key plays a central role: 

The simplest option is uniform distribution by the hash value from the vector identifier or random 

sampling. This method is easy to implement and guarantees a nearly uniform storage volume on each node, but 

it completely ignores the semantic proximity of objects, which can lead to redundant searches in segments that 

are not relevant to the query. 

A more sophisticated mechanism — content-aware sharding, in which vectors are grouped into clusters 

based on their mutual similarity (for example, using the k-means algorithm), and each such group becomes a 

separate shard. In this case, a query can be addressed only to those shards whose centroids are close to the query 

vector, which significantly reduces the volume of computational operations and network traffic at large data 

scales. 

Illustratively, the difference between simple hash-sharding and cluster-oriented partitioning is shown in 

Figure 1. 
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Figure 1: Data partitioning schemes [11,12] 

 Diagram (A) shows hash-based sharding, where data vectors (points) are randomly distributed across three 

shards. A query (star) must be sent to all shards. Diagram (B) shows clustering-based partitioning, where 

semantically similar vectors are grouped together. 

 

Query parallelism is aimed at increasing system throughput by replicating the full set of vectors (or their 

episodes) across multiple nodes. Each replica becomes an autonomous handler of incoming queries, which 

allows for load balancing and the simultaneous servicing of a larger number of parallel queries. This approach is 

particularly justified in scenarios where query intensity is high and the data volume remains moderate, since the 

costs of storing additional copies of data are offset by gains in response speed and fault tolerance. 

In practice, a hybrid topology is often applied in which the original data array is partitioned into N 

shards, each of which is then replicated M times. By increasing N the overall volume of stored material is 

expanded, and with the growth of M the maximum request throughput increases proportionally, while 

maintaining a balance between resource utilization efficiency and the required level of fault tolerance [8, 9]. 

The throughput of solutions of both types scales almost linearly with the increase in the number of 

shards. At the same time, content-oriented partitioning with smart request routing demonstrates higher QPS 

values because the search system queries only the relevant clusters, unnecessary scanning of all segments is 

eliminated, and computational resources are directed towards processing a greater number of concurrent queries. 

This demonstrates that the inclusion of semantic information about vectors during sharding is a key factor in 

improving efficiency. 

Equally important is the trade-off between search (recall) and response latency (latency). In the case of 

graph indexes such as HNSW, increasing the efSearch parameter ensures a deeper traversal of the structure and 

improves result quality, but leads to an increase in response time. Parallel replication of shards helps to mitigate 

this effect: by distributing incoming queries among multiple copies of the same segment, the system reduces the 

load on each node and lowers the average latency. In Table 1, a comparison of the key characteristics and trade-

off parameters of the main sharding strategies is presented. 

 

Characteristic Hash sharding Cluster sharding Replication (Query parallelism) 

Load balancing Excellent (in terms 

of volume) 

Dependent on data 

distribution (risk of hot 

clusters) 

Excellent 

Search latency 

(1 query) 

High (scanning all 

shards) 

Low (scanning a 

subset) 

Low (dependent on a single node) 

Throughput Medium High Very high 

Storage cost Minimal Minimal High (a multiple of the number of 

replicas) 

Implementation 

complexity 

Low High (requires 

clustering and a router) 

Medium 

Table 1: Comparative analysis of sharding strategies [2, 4, 6, 10] 
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The proposed methodology relies on a structured, priority-based mechanism for selecting a scaling 

strategy. In cases where the volume of processed data is extremely large and latency requirements are moderate, 

the optimal solution is horizontal partitioning into partitions. Conversely, if the data volume remains 

manageable but the key criteria are minimal latency and maximal throughput, replication becomes the preferred 

approach. 

However, in practice, scalable systems developed by leading players in AI data management typically 

implement a combined scheme. Platforms such as Activeloop Deep Lake are designed for storing and 

dynamically updating large unstructured datasets, which require not only traditional sharding methods but also 

intelligent logic for redistributing data fragments in response to changing load and access patterns. The 

architecture of such solutions provides for the creation of live datasets with continuous synchronization between 

storage and compute layers, effectively necessitating the deployment of hybrid shard strategies. This concept 

demonstrates the superiority of the hybrid approach over pure partitioning or replication under conditions of 

dynamic growth and workload variability. 

Additional justification for the importance of seamless elasticity arises when integrating these platforms 

with high-level frameworks such as LangChain, which are used for constructing Retrieval-Augmented 

Generation (RAG) systems. Such integration enables storage and compute to scale in unison, preventing 

performance degradation as the number of queries and the complexity of computational tasks increase. Finally, 

the fundamental trade-off between operational cost and performance remains a cornerstone of architectural 

decision-making. 

A comparative analysis of sharding strategies in vector databases—including advantages, disadvantages, 

and future trends—will be presented in Table 2. 

 

Strategy Advantages Disadvantages Future Trends 

Hash sharding - Simplicity of 

implementation- 

Guaranteed uniform data 

distribution- Minimal 

storage overhead 

- Ignores vector semantics- 

High search latency (each 

query to all shards)- 

Limited QPS growth 

- ML-driven dynamic 

routing and re-hashing- 

Integration with hybrid 

schemes- Metric-based 

auto-sharding 

Content-oriented shard 

partitioning 

- Significant latency 

reduction (search only in 

relevant shards)- 

Increased throughput- 

Improved result accuracy 

- Complexity of 

implementation and 

maintenance (clustering + 

router)- Risk of hot shards- 

Overhead of periodic re-

partitioning 

- Online learnable shard 

partitioning- GPU-

accelerated clustering- 

Automatic updating of 

boundaries 

Replication / Query 

parallelism 

- Linear QPS scaling with 

each new replica- High 

fault tolerance- Flexible 

traffic balancing among 

copies 

- High storage costs (each 

copy)- Consistency 

challenges with frequent 

updates- Additional 

synchronization overhead 

- Geo-distributed replicas 

and multi-DC sharding- 

Edge replication closer to 

end users- Integration 

with federated search and 

privacy 

Hybrid schemes (N shards 

× M replicas) 

- Combination of 

scalability and fault 

tolerance- Adaptive 

resource allocation 

(hot/cold shards)- Balance 

of latency and cost 

- High operational 

complexity (monitoring N 

and M)- Fine-tuning the 

number of shards and 

replicas- Complex cluster 

maintenance 

- Self-adaptive hybrid 

policies (auto-sharding)- 

SLA-oriented and cost-

aware management- 

Quantum-inspired 

partitioning methods 

Table 2. Comparative analysis of sharding strategies in vector databases: advantages, disadvantages, and future 

trends [3, 5, 7] 

 

Therefore, it can be observed that a universal sharding scheme does not exist – each system requires its 

own detailed, comprehensive investigation. 

In particular, semantic partitioning of vector representations with intelligent query routing appears most 

promising for platforms processing extremely large volumes of data. 

At the same time, the combination of this approach with replication of hot segments enables the 

construction of a hybrid model in which a balance is achieved between minimal latencies, controlled operational 

cost, and the required level of scalability — the key requirements of modern AI applications. 
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4. Conclusion 
During the study, a comprehensive analysis was conducted of existing sharding methodologies aimed at 

ensuring the scalability of advanced vector data stores. It was established that with the rapid increase in the 

volumes of vector representations, driven by the progress of generative artificial intelligence models, traditional 

data distribution and management schemes lose their effectiveness, which necessitates the development of 

flexible distributed architectures. 

Hybrid sharding algorithms — combining content-oriented partitioning with replica-parallel query 

processing — demonstrate the greatest adaptability and high performance when servicing diverse, realistic 

workloads. Unlike fixed strategies (for example, simple hashing), such combined approaches ensure minimal 

processing latencies and increased throughput while rationally utilizing computational and network resources 

[2]. 

Within the scope of this work, a detailed taxonomy of sharding methods is described, and a conceptual 

framework model for selecting the optimal strategy is formulated. This model relies on a multi-criteria analysis 

comprising parameters: the volume of processed data, latency and throughput requirements, data characteristics, 

and economic costs. It serves as an applied tool for system architects and engineers in the design of scalable AI-

oriented solutions. 

Thus, the objective of the study has been achieved: existing sharding methods have been systematized, 

and the framework model provides a theoretical and practical link between algorithmic developments and the 

requirements for creating high-load systems. The scientific novelty of the work lies in the proposed model, 

which fills the strategic gap between theoretical research of individual algorithms and the engineering tasks of 

comprehensive design. A promising direction for further research is the development of self-adaptive sharding 

mechanisms based on machine learning methods, capable of reconfiguring the distribution of shards and replicas 

in real time in response to changes in data patterns and the nature of user queries. 
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