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Abstract: Abrupt breakage of the taps is repeatedly come across during tapping threads, especially when 

tapping on difficult to machine material like titanium. In the present study, regression models and artificial 

neural network (ANN) were developed to predict tapping torque on titanium alloys while performing axial and, 

axial and torsional vibration-assisted tapping (AVAT and ATVAT). For the development of predictive models, 

tapping speed, axial vibration amplitude and ratio of forward-backward movement were considered as model 

variables in both the cases. General full factorial design of experiments was carried out in order to collect torque 

values and this data is input for model construction. In regression and ANN, different models and algorithms 

were tested for optimum predictions. The performance of the regression mathematical model and ANN model 

were compared with experimental outputs. The comparison indicates that the ANN model predictions are closer 

to the experimental outputs compared to the regression model predictions. This model can be used for predicting 

the tapping torque and on the basis of this breakage of taps can be avoided. The details of experimentation, 

model developing strategies, testing, and performance comparisons are presented in the paper. 

Keywords: Titanium alloys, vibration-assisted tapping, torque, regression model, ANN. 

 

1. Introduction 
Excessive torque is one of the main causes for abrupt breakage of tap inside the predrilled hole during 

internal thread tapping [1,2]. Nevertheless, it is understood in the earlier investigation that controlled axial [3-8] 

and torsional [9-14] vibrations in tapping helps to reduce the maximum torque and force to an acceptable level, 

and eventually improves the tap life. But only a few studies adopt the vibrations variables in analytical models 

[3,15]. 

Nowadays machining field is significantly interested in the use of regression analysis and ANN for 

prediction and analysis of results. This includes studies on surface roughness [16-21], tool wear [18,22-24], tool 

chip interface temperature [25], heat affected zone [19,26], cutting force [20,27], profile accuracy [28] and 

cutting tool stress [29] in the earlier publication. The artificial neural network (ANN) is one of the most 

powerful modeling techniques based on a statistical approach, which has been applied to modeling complicated 

processes in many engineering fields, such as material science [30], aerospace [31], automotive, energy [32,33] 

and manufacturing [34]. With ANN, a predictive model can compensate for the limits of conventional predictive 

control based on the linear model and can predict the non-linear model more accurately. Reddy et al. [35] have 

shown that an ANN can perform highly complex mappings on nonlinearly related data by inferring subtle 

relationships between input and output parameters. The basic advantage of ANN is that it is not necessary to 

postulate a mathematical model at first or identify its parameters. An ANN learns from the data obtained from 

experiments and recognizes patterns in a series of inputs and output data sets without any prior assumptions 

about their interrelations. In the past few years, ANN has been developed to model different correlations and 

phenomena of alloys [31,34,36,37]. Powar and Date [36] have shown that, the ANN can be successfully used in 

the field of material science for the prediction of the microstructure and mechanical properties of heat treated 

components with a correlation coefficient (R) over 90%. Malinov and Sha [37] had shown that the fatigue 

behavior and the corrosion rate can also be predicted as functions of the alloy composition and environmental 

conditions. 

This paper therefore focuses on investigating the suitability of torque predictive models based on 

regression analysis and ANN. The models for torque prediction were developed with the tapping speed, axial 

vibration amplitude and ratio of forward-backward movement as the vibration assisted tapping process 

parameters.  The input–output data required to develop both regression models and ANN models have been 

obtained through multi-level general full factorial design of experiments. The developed models have been 

tested for their prediction accuracy with new process parameter combinations. The comparison of the main and 

interaction effects of the process parameters of the regression and ANN models has also been demonstrated in 

the paper. The details of this work are presented in the following sections of this paper. 
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2. Experimental Details 
The block diagram of the setup employed in the present study to carry axial and torsional vibrations is 

illustrated in Fig.1. In the present work, piezoelectric device along with generator was used for axial vibrations 

and CNC controller was used for torsional vibrations. The piezoelectric device was fixed on dynamometer with 

help of holding fixture and then the whole assembly attached to work table. The tapping was carried out on 

cylindrical workpieces made of Ti-6Al-4V by right hand taps. The experimental strategy used in this experiment 

was general full factorial design, as shown in Table 1. In this experiment, there were three controlled variables 

investigated, including axial vibration amplitude, tapping speed and ratio of forward to backward movement 

(RFBM) with different level, as shown in Table 2. Each variable had two replications; therefore, the total 

numbers of experimental trials were 48. This replication permits to obtain more precisely estimate the effect. In 

this experiment, the orders in which the individual trials of the experiments are to be performed are randomly 

determined. 

 

 
Fig. 1 Experimental setup 

 

Table 1 – Experimental design using general full factorial design and results 

Trial no. Levels of input factors  Response - Torque (N.cm)  

Std. 

Order 

Run 

Order 

Amplitud

e 

(µm) 

Speed 

(RPM

) 

RFBM Experimental Regression 

predication 

% 

error 

ANN 

Predication 

% 

error 

26 1 0 50 1.5 148.1 154.0 4.0 152.30 2.76 

45 2 14 75 0.0 159.1 153.0 3.9 160.75 1.03 

34 3 6 75 1.5 103.1 93.0 9.8 104.15 1.01 

40 4 10 75 1.5 93.2 105.2 12.9 94.25 1.11 

28 5 0 75 1.5 108.1 118.6 9.8 107.60 0.46 

27 6 0 75 0.0 169.9 164.5 3.2 171.50 0.93 

32 7 6 50 1.5 143.3 129.7 9.5 142.80 0.35 

46 8 14 75 1.5 142.3 140.9 1.0 143.15 0.59 

29 9 0 100 0.0 202.4 214.1 5.8 203.85 0.71 

41 10 10 100 0.0 172.3 174.3 1.2 171.70 0.35 

38 11 10 50 1.5 133.7 142.8 6.8 132.90 0.60 

31 12 6 50 0.0 162.1 165.2 1.9 161.65 0.28 

33 13 6 75 0.0 126.1 124.4 1.3 125.45 0.52 

39 14 10 75 0.0 119.3 127.0 6.4 119.80 0.42 

35 15 6 100 0.0 183.3 172.6 5.8 181.70 0.88 

44 16 14 50 1.5 183.1 179.3 2.1 184.10 0.54 
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36 17 6 100 1.5 173.0 145.4 9.4 171.55 0.85 

47 18 14 100 0.0 196.1 199.4 1.7 198.90 1.41 

25 19 0 50 0.0 209.9 204.0 2.8 210.50 0.29 

48 20 14 100 1.5 187.8 191.5 2.0 188.95 0.61 

30 21 0 100 1.5 174.3 172.3 1.1 173.50 0.46 

37 22 10 50 0.0 153.5 168.6 9.8 153.75 0.16 

42 23 10 100 1.5 147.7 156.7 6.1 147.90 0.14 

43 24 14 50 0.0 201.3 195.5 2.9 203.05 0.86 

11 25 6 100 0.0 180.1 172.6 4.1 181.70 0.88 

16 26 10 75 1.5 95.3 105.2 10.4 94.25 1.11 

24 27 14 100 1.5 190.1 191.5 0.7 188.95 0.61 

10 28 6 75 1.5 105.2 93.0 11.6 104.15 1.01 

23 29 14 100 0.0 201.7 199.4 1.1 198.90 1.41 

20 30 14 50 1.5 185.1 179.3 3.1 184.10 0.54 

3 31 0 75 0.0 173.1 164.5 5.0 171.50 0.93 

5 32 0 100 0.0 205.3 214.1 4.3 203.85 0.71 

19 33 14 50 0.0 204.8 195.5 4.5 203.05 0.86 

21 34 14 75 0.0 162.4 153.0 5.8 160.75 1.03 

12 35 6 100 1.5 170.1 145.4 8.7 171.55 0.85 

2 36 0 50 1.5 152.3 154.0 1.1 152.30 0.00 

7 37 6 50 0.0 161.2 165.2 2.5 161.65 0.28 

18 38 10 100 1.5 148.1 156.7 5.8 147.90 0.14 

22 39 14 75 1.5 144.0 140.9 2.2 143.15 0.59 

9 40 6 75 0.0 124.8 124.4 0.3 125.45 0.52 

4 41 0 75 1.5 107.1 118.6 10.8 107.60 0.46 

17 42 10 100 0.0 171.1 174.3 1.9 171.70 0.35 

14 43 10 50 1.5 132.1 142.8 8.1 132.90 0.60 

13 44 10 50 0.0 154.0 168.6 9.5 153.75 0.16 

1 45 0 50 0.0 211.1 204.0 3.4 210.50 0.29 

8 46 6 50 1.5 142.3 129.7 8.9 142.80 0.35 

6 47 0 100 1.5 172.7 172.3 0.2 173.50 0.46 

15 48 10 75 0.0 120.3 127.0 5.5 119.80 0.42 

Table 2 – Factors and their levels 

Factor Notation Unit Level 1 Level 2 Level 3 Level 4 

Amplitude A µm 0 6 10 14 

Tapping Speed Ts RPM 50 75 100 -- 

RFBM Φ -- 0 1.5 -- -- 

 

3. Prediction models 
3.1 Regression Model (RM) 

The regression examination method has three paths to follow which are experimental investigations, 

mathematical methods and statistical analysis [38]. A researcher is always keen to put forward the relation 

between independent variables to govern the optimal solution for objective function with the help of coefficients 

of the independent variables. These regression coefficients were projected using the experimental data and 

mathematical methods. In the present investigation, a whole analysis was done using the experimental data in 

Table 1. Fig. 2 shows a descriptive model building strategy. In the beginning, the best subset regression method 

is used to analyze the independent variables and their interactions and higher order terms using MINITAB 16 

software. This is the most efficient and effective way to develop accurate models with few trams as possible. 

The purpose of doing this is finding the significance of higher-order terms and kept them as low as possible. 

Such a low term model is easier to test again in replication as well as in cross-validation studies, less costly to 

put into practice in predicting and controlling the outcome in the future and easier to understand. Then the 

models are gauged to finalize the best model by the criteria of standard Error (S), coefficient of determination 

(R
2
), adjusted coefficient of determination (𝑅2

), and Mallows’ Cp statistic. The best subset model is checked 

with a general regression analysis and further evaluated by t-test, f-test, Durbin-Watson test and residual plots. If 

model is failing on the tests, go for a next best subset model and repeat the cycle. Finally, the predicted values of 

regression model are compared with the actual experimental data.   
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 Specially, with a sample of n observations of the dependent variable Y, the regression model [39] can 

be expressed as, 

 

𝑌(𝑃) = 𝐶0 + .

𝑛

𝑖=1

𝐶𝑖𝑃𝑖 + .

𝑛

𝑖=1

 .

𝑚

𝑘=2

𝐶𝑖𝑖𝑃𝑖
𝑘 +  .

𝑛

1≤𝑖<𝑗

𝐶𝑖𝑗𝑃𝑖𝑃𝑗 +  .

𝑛

1≤𝑖<𝑗<𝑘

𝐶𝑖𝑗𝑘 𝑃𝑖𝑃𝑗𝑃𝑘 + 𝐸𝑟               (1) 

 

Where, Y is theresponsevariable (tapping torque), n is the number of factors (3), 𝐶0 is the free term, 𝐶𝑖  is the 

linear effect,𝐶𝑖𝑖  is the squared, 𝐶𝑖𝑗  and 𝐶𝑖𝑗𝑘  are the interaction effect and 𝐸𝑟  is the residual. 

 

Fig. 2 Regression model building strategy 

 

3.2 ANN model 
A typical ANN consists of one input layer, one or more hidden layers and one output layer. ANN 

learns from given examples by constructing an input-output mapping in order to perform estimations. Each 

neuron in the input layer represents one independent variable and the neurons in the hidden layers are only for 

computation purpose. The function of hidden layer neurons is to detect the relationship between network inputs 

and outputs. Each of the output neuron computes one dependent variable. All the neurons of the network are 

connected by the weight that expresses the effect of an input set or another process element in the previous layer 

on the output. The connection weighting and bias values are initially chosen as random numbers and then fixed 

during the training process. The input layer receives input data and after processing, sends them to the hidden 

layer. The hidden layer processes the data and sends a response to the output layer. The output layer accepts the 

response and produces the result. 

There are many variations of connections available in literature [40]. However, this study focuses on only one 

type of network, multilayer perceptron (MLP). The MLP Neural Networks consist of neurons, which are 

ordered into layers as shown in Fig. 3. The parameters and results of the actual trials shown in Table 1 were 

used to make a neural network model for the problem. There are several learning algorithms in ANN. A learning 

algorithm is a procedure of adjusting the weights and biases of a network, to minimize an error between the 

network output and actual output for a given set of inputs. Back-propagation (BP) algorithm is most popular 

learning algorithms for multilayer perceptions. However, BP has the disadvantage of slow convergence to the 

solution and also required long training times. Additionally, success of the BP algorithm depends on the user-

dependent parameter [32]. The Levenberg–Marquardt (LM) and Quasi-Newton algorithms are faster than BP 

algorithm and use standard numerical optimization methods [41]. The LM is an alternative to backpropagation 

for use in training feedforward neural networks based on a nonlinear optimization. LM algorithms use an 

approximation of second-order derivatives of the objective function so that better convergence behavior can be 

obtained. Moreover, this method provides a better parameter change vector than gradient descent technique. 

Quasi-Newton algorithms build up curvature information at each iteration to formulate a quadratic problem. LM 

and Quasi-Newton algorithms resolve the some disadvantages of BP mentioned above. ANNs are designed 

according to their connection architecture, learning the algorithm, the number of hidden layers, number of nodes 

in a hidden layer and transfer function. Also, these design criteria affect the performance of ANNs. 
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Fig. 3 MLP feed forward ANN 

 

4. Results and discussion 
4.1 Regression analysis 

A best subsets approach is used to scrutinizing all possible models using listed set of terms. In this 

approach in the beginning all models which have only one term involved are checked and the two best models 

based on a higher coefficient of determination (R2) value are presented. Then same route is used to check the all 

models in which two terms involved. This process continues until all terms have been taken into account. The 

end result is nineteen models with 1–10 terms and their summary of statistics. The statistics that Minitab 

provides to choose a better model is shown in Table 3. Fig. 4a-d illustrates the trend of coefficient of 

determination (R2), adjusted coefficient of determination (R 2̅), Mallows’ statistic (Cp) and standard error (S) 

with a number of terms (P).  It is observed that the after fifth terms every model have higher values of R2 and R 

2̅ and the after sixth term lower in Cp and S . In the statistics higher value of R 2 and R 2̅ is better, when 

comparing the models with the same and different number of terms respectively. Therefore, the model number 

fifteen with eight numbers of terms is best based on R 2 and R 2̅ criteria’s. Similarly, model fifteen is showing 

minimum values of Cp and S, see Fig 4c-d. The smaller and closer to number of term value of Cp shows the 

model is better in predication and smaller S is pointed toward the lower variability about the regression line. 

From the subset analysis (Table 3), the final third-order general regression model for tapping torque obtained is 

as follows: 

𝑇𝑜𝑟𝑞𝑢𝑒 = 553.148 − 10.5433 ∗ 𝑇𝑠 − 48.0338 ∗ 𝛷 − 1.48419 ∗ 𝐴2 + 0.071195 ∗ 𝑇𝑠
2 + 2.83728 ∗ 𝐴 ∗ 𝛷

+ 0.232474 ∗ 𝑇𝑠 ∗ 𝛷 − 0.016352 ∗ 𝐴 ∗ 𝑇𝑠 ∗ 𝛷 + 0.103566
∗  𝐴3                                                                                            (2) 

 

The above equation is third-order polynomial regression equation representing the torque as a function of 

vibration assisted tapping factors such as vibration amplitude (A), tapping speed (Ts) and a ratio of forward-

backward movement (Φ) with their interaction and higher order terms. 

The t-test is used to examine the significance of the individual term involved in the model at the 95% confidence 

level. The output from MINITAB 16 (coefficient, SE coefficient, t-value and t-significance) associated with 

individual term are presented in Table 4. If the t-significance value associated with individual term are less than 

0.05, then those terms statistically significant to the models. The t-significance value of all terms of regression 

model (equation number) presented in Table 4 are less than 0.05, it is concluded that every term plays important 

role in the equation. The degrees of freedom (DF), mean square (MS) and F-value and F-Significant (ANOVA) 

associated with regression model are presented in Table 5. Since the F-Significant in Table 5 is less than 0.05, 

there is a statistically significant relationship between tapping torque and the forecaster variables at the 95% 

confidence level. Similarly, ANOVA results of the individual term as it were involved in the model summarized 

in Table 6. The F-Significant of individual term in Table 6 is less than 0.05. Therefore, all terms included in the 

model are statistically significant at the 95% confidence level. Thus, the developed model is satisfactorily 

reliable. 
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Table 3 – Subsets Analysis 

Sr. 

No 
Model Parameters 

P R2 𝑅2 Cp S A 𝑇𝑠  𝛷 A
2
 𝑇𝑠2 A*𝑇𝑠  A*𝛷 𝛷 

*𝑇𝑠  
A*𝑇𝑠* 
𝛷 

A3 

01   ×        1 18.7 17 994 29.55 

02        ×   1 12.6 10.7 1072 30.64 

03  ×   ×      2 44.7 42.2 665 24.66 

04    ×      × 2 29.3 26.1 862 27.88 

05  × ×  ×      3 63.4 60.9 428 20.28 

06  ×   ×   ×   3 61.0 58.3 459 20.94 

07  ×  × ×     × 4 73.9 71.5 295 17.31 

08 × ×   ×     × 4 72.3 69.7 315 17.84 

09  × × × ×     × 5 92.6 91.8 58 9.30 

10 × × ×  ×     × 5 91.0 90 78.5 10.26 

11  × × × ×  ×   × 6 96.5 96 11 6.52 

12  × × × ×    × × 6 95.6 94.9 22.8 7.32 

13  × × × ×  × ×  × 7 96.8 96.2 9.5 6.33 

14  × × × × × ×   × 7 96.5 95.9 12.2 6.53 

15  × × × ×  × × × × 8 97.1* 96.5* 7.4* 6.08* 

16  × × × × × × ×  × 8 96.8 96.2 10.7 6.35 

17  × × × × × × × × × 9 97.1* 96.4 9 6.14 

18 × × × × ×  × × × × 9 97.1* 96.4 9.3 6.16 

19 × × × × × × × × × × 10 97.1* 96.3 11 6.21 

P- Number of terms, R2-Coefficient of determination, 𝑹2-Adjusted coefficient of determination, Cp -Mallows’ 

statistic and S-Standard error. * Indicates most significant value 

 

 
  (a)               (b) 

 
  (c)              (d) 

Fig. 4a-d Statistics with number of terms; (a) coefficient of determination, (b) Adjusted coefficient of 

determination, (c) Mallows’ statistic and, (d) standard error 
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Table 4 – Summary statistics for individual term 

Terms Coefficient SE Coefficient t-value t-significance 

Constant 553.148 16.3378 33.8569 0.000 

𝑻𝒔 -10.543 0.4514 -23.3590 0.000 

𝜱 -48.034 6.4978 -7.3924 0.000 

A2 -1.484 0.0792 -18.7469 0.000 

𝑻𝒔2 0.071 0.0030 23.8784 0.000 

A*𝜱 2.837 0.6300 4.5033 0.000 

𝜱 *𝑻𝒔 0.232 0.0822 2.8287 0.007 

A*𝑻𝒔* 𝜱 -0.016 0.0078 -2.0844 0.044 

A3 0.104 0.0052 19.8782 0.000 

     

Table 5 – ANOVA table for model fitting 

Source d.f Sum of squares Mean squares F-Value F-Significant 

Model 8 4798.5 5998.3 161.938 0.000 

Residual 39 1444.6 37   

Total (corrected) 47 49431.0    

Table 6 – ANOVA table for regression coefficients 

Source d.f Sum of squares Mean squares F-Value F-Significant 

𝑻𝒔 1 953.8 20210.9 545.641 0.000 

𝜱 1 9257.4 2024.2 54.647 0.000 

A2 1 1591.9 13017.8 351.446 0.000 

𝑻𝒔2 1 21119.7 21119.7 570.176 0.000 

A*𝜱 1 130.6 751.2 20.280 0.000 

𝜱 *𝑻𝒔 1 135.7 296.4 8.001 0.007 

A*𝑻𝒔* 𝜱 1 160.9 160.9 4.345 0.044 

A3 1 14636.4 14636.4 395.145 0.000 

Residual 39 1444.6 37   

Total (corrected) 47 49431.0    

 

The model adequacy is verified by carrying out a residual analysis. In residual analysis, residual plots 

are used to examine the goodness-of-fit of the regression model as well as identify any violations of the 

underlying assumptions (normality, independence, and constant variance of residuals). If these assumptions are 

gratified, then regression model is adequate and residual is structure -less. In the present model, the residuals are 

appearing normally distributed (shown in the Fig. 5a-b probability and histogram plots) and generally random 

(shown in the Fig. 5c-d, which display the residuals against their fitted values and in their observation order). 

The points in the normal probability plot are shown a general form of straight line and it directs the residuals are 

normally distributed, see Fig. 5a. If the points on the plot are departing from a straight line, then the normal 

probability assumption is invalid. 

 Similarly, the histogram frequency distribution plot is shown data centered at zero directs the residuals 

are normally distributed, see Fig. 5b. If the pattern is shown long tail on one side, it indicates the skewed 

distribution, whereas if it is shown the bars far away from each other indicate the outliers. The points in residual 

versus the fitted values plot have shown a randompattern of residuals on both sides of zero line and it has 

ensured the constant variance assumption, see Fig 5c. In Fig 4d residual versus the order plot has shown the data 

according to the observation order and it is helping to find time related effects. A tendency of positive and 

negative residuals in the plot (Fig 5d) is pointed toward positive correlation. Correspondingly, Durbin–Watson 

test is used to examine the independence assumption on the residuals. At the 95% confidence level, when the 

number of variables is three and the number of residuals is forty eight, the upper bound value of Durbin–Watson 

test is 1.674 [42]. Durbin–Watson test statistic for this model was 2.25, which is greater than the upper bound 

value. Hence, independence assumption on the residuals was satisfied for this model. The results predicted by 

regression model are compared with experimental results in Fig 5e. It shows the model prediction presents a 

good agreement with the experimental data. 
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            (a)           (b) 

 
            (c)              (d)  

 
             (e)      

Fig. 5 a-e; (a) Normal probability plot of residuals, (b) Histogram of the residuals, (c) residual versus the fitted 

values, (d) residual versus the order of the data and, (e) Comparison of regression results with experimental 

measurements. 

 

4.2 Construction and analysis of ANN 

Change in the structural parameter will make a difference in the output predictions. To design a stable 

network, it would be more appropriate to carry out a parametric study of changing the network parameters and 

testing the correspondingly changing stability of the ANN. Determining the most appropriate parameter for each 

problem constitutes a problem itself, and their selection is extremely important. 

In this study, a multilayer feed-forward back propagation neural network model was used for the 

estimation of required tapping torque.  The data generated from the systematic DOE is shown in the table 1 and 

used for ANN modeling. The three independent parameters, namely amplitude, speed and RFBF represent the 

inputs to ANN model and torque represents the output. Normalization of ANN inputs to a certain range is 

required in order to make the activation function to identify the inputs at the minimum and maximum range of 

the data set. Although there are various normalization techniques, their common characteristic is to convert the 

data sets to desired levels by using a scaling factor. In all of the analysis conducted in the study, each set of 

inputs and output values is scaled into the [-1, 1] range according to eq. (3). 
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𝑋𝑁 = 2
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
− 1    (3) 

 

Where XN is the normalized value of a certain parameter, X is the measured value for this parameter 

and Xmin and Xmax are the minimum and the maximum values in the database for this parameter, respectively. 

The MATLAB neural network toolbox was used to train the developed network models. In this part of the 

study, different ANN models were designed and tested. The successful models are summarized in Fig. 6a-c and 

7a-c.  For present model construction, 5 different learning algorithms, 4 different transfer functions, 1-3 hidden 

layers, and all possible combinations of 4-7 neurons at hidden layer are tried with higher number of epochs. The 

dataset was divided randomly into 3 groups. The groups were as follows: one half – training set, one quarter – 

validation set and one quarter – test set. The training program was written in such a way that whenever the 

program ran, the whole dataset was randomly divided into these three groups of sub data. 

In the present study, performance of networks was determined on the basis of standard deviation (σ) and the 

average absolute error (Er). Among these models, the fastest model having the best generalization capability 

with lower standard deviation and error is selected for prediction of tapping torque. From Fig. 6a-c and 7a-c 

shows that, Levenberg– Marquardt algorithm having a high error percentage for first four experiments than the 

Batch Gradient Descent algorithm and Quasi-Newton algorithms. But compared to other algorithms, it is having 

very low, almost zero standard deviation for 6 or higher number of hidden neurons. Final selected model has 

one hidden layer with 7 neurons and Levenberg– Marquardt algorithm (LMA) as the learning algorithm. 

Whereas, it has a tan-sigmoid (tansig) and linear (purelin) transfer function between the layers. However, 

learning rate was kept at 0.1. 

 

 
 

Fig. 6a-c Variation of average absolute error with respect to different number of hidden neurons (a) Levenberg–

Marquardt algorithm (b) Batch Gradient Descent algorithm (c) Quasi-Newton algorithms 
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Fig. 7a-c Variation of standard deviation with respect to different number of hidden neurons (a) Levenberg–

Marquardt algorithm (b) Batch Gradient Descent algorithm (c) Quasi-Newton algorithms 

 

The constructed model is now used for the prediction of tapping torque and results obtained were 

compared with the experimental results. The results indicate that the ANN model has been successfully applied 

to the tapping parameters of Ti6Al4V. The comparison of results is shown in Fig. 8, from the figure it can be 

seen that ANN predictions closely follows the experimental values. The validation for the tapping torque values 

using ANN has been listed in Table 1. It is clear from Table 1; the percentage of error between the experimental 

and predicted values is found that a minimum of 0 and maximum of 2.76. This error is a reasonable one and 

shows that the ANN model predicted satisfactory the required tapping torque for titanium material. 
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Fig. 8 Experimental data vs. ANN results 

 

4.3 Regression Vs. ANN 

In the present study, the same data set is used in order to compare the performance of regression and 

ANN. First, the regression coefficients are found by forming the third-order general regression model with three 

independent variables. The finalized model was gauged on the basis of reliability indicators such as standard 

error (S), coefficient of determination (R2), adjusted coefficient of determination (R2), and Mallows’ Cp 

statistic and further evaluated by t-test, f-test, Durbin-Watson test and residual plots.Second, to create an ANN 

suitable for the present work and to have a good prediction capability, different network configurations are 

designed with different learning algorithms and with different structural parameters. Final optimized network 

structure is discussed in detail in section 4.2.The performance results obtained for both regression and ANN are 

compared in Fig. 8. An ANN prediction follows more closely to the experimental results than the regression 

results. Despite the variation of results in regression the accuracy of prediction is near to 99%. However, the 

error rates of ANN of are less than the regression. 

 
Fig. 9 Regression vs. ANN results 

 

Conclusions 
This paper has illustrated performance of tapping process in the presence of controlled vibrations for 

titanium alloy. To establish the relationship between the controlled vibrations and the maximum torque in 

tapping process, a regression analysis and ANN systematically carried out based on general full factorial design. 

The comparisons were made of the above approaches after testing their performance on 10 randomly selected 

test cases. This paper also discussed the effect of tapping speed and vibration parameters on maximum torque in 

the tapping process. The key findings of this study as follows: 

1. Both the regression and ANN approach were seen to be sufficient for estimating tapping torque with very 

small test error. However, the maximum prediction error of the regression model was less than 12.9 % and 
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the average prediction error was less than 5 %. Whereas, with ANN (with the LM algorithm) maximum 

prediction error was less than 1.4 % and the average prediction error was less than 0.7 %.  

2. The obtained results indicated that the regression and ANN are suitable techniques to construct predictive 

models for prediction of required tapping torque in titanium alloys. Consequently models can be used 

successfully to avoid the tap breakage. 
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