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Abstract: The present article aims to investigate the analytical and numerical solution of a 

magnetohydrodynamic (MHD) flow of a viscous fluid towards a nonlinear porous shrinking sheet. The 

analytical solution of this problem is computed by The Adomian decomposition method (ADM). The ADM is 

provided an analytical solution in the form of an infinite power series. The governing equation of the MHD flow 

is simplified to boundary value problem (BVP) by similarity transformations and solved numerically using the 

Runge-Kutta method with the shooting technique. The Pertinent parameters appearing in the problem are 

discussed graphically and presented in tables. Convergent [m,m]  Pad´e approximants are obtained and 

compared with the numerical results. It is found that the  Pad´e approximants agree well with the numerical 

results. Comparison with homotopy analysis method (HAM) reveals that excellent agreement.    
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1 Introduction 

In the beginning of the 1980s, a new method for exactly solving nonlinear functional equations has 

been proposed by George Adomian, the so called  Adomian decomposition method [1-3]. Over these years, this 

method has been applied to solve a wide range of problems arising from physics, biology, engineering. This 

method uses a decomposition of the nonlinear operator as a series function [4,5]. A considerable amount of 

research work has been invested recently in applying this method to a wide class of linear and nonlinear 

ordinary differential equations, partial differential equations and integral equations. In fluid mechanics, the 

problems are usually governed by systems of partial differential equations. If somehow, a system can be reduced 

to an ordinary differential equations, this constitutes a considerable mathematical simplification of the problem. 

If the number of independent variables can be reduced, then partial differential equations can be replaced by 

ordinary differential equation. In the modeling of boundary layer, this is sometimes possible and in some cases, 

the system of partial differential equations reduces to a system involving a third order differential equation[6].  

The phenomena of velocities on the boundary towards a fixed point are known as shrinking 

phenomena, which often occur in the situations such as rising shrinking balloon. The flow over a shrinking 

surface is an important problem in many engineering processes with applications in industries such as the hot 

rolling, wire drawing and glass wire production. In nature, the presence of pure air or water is impossible. Some 

foreign mass may be present either naturally or mixed with the air or water. The present trend in the field of 

magnetic strength analysis is to give a mathematical model for the system to predict the reactor performance 

[7,8]. Only limited attention has been focused on the study of shrinking phenomena[7-18]. However, in certain 

situations, the shrinking sheet solutions do not exist since the vorticity cannot be confined in a boundary layer. 

These solutions may exist if either the magnetic field or the stagnation flow is taken into account. It is worth 

mentioning that the flow of an electrically conducting fluid past a porous plate under the effect of a magnetic 

field has attracted the attention of many investigators in view of its applications in many engineering problems 

such as MHD generators, plasma studies, nuclear reactors, oil exploration, geothermal energy extractions, and 

the boundary layer control in the field of aerodynamics. A number of MHD studies discuss the effects of 

magnetic fields on the hydrodynamic flow in various configurations[8,19-26]. The purpose of the present paper 

is to discuss the analytical and numerical solution of  the two-dimensional electrically conducting viscous fluid 

past a porous nonlinear porous shrinking sheet. The governing equations are simplified by a suitable similarity 

transformation, and the reduced nonlinear boundary value problem is then solved analytically by the ADM and 

numerically by Runge-Kutta method with the shooting technique. Convergent [m,m]  Pad´e approximants are 

obtained and compared with the numerical results. It is found that the  Pad´e approximants agree well with the 

numerical results. By comparing with HAM reveals that there exist an excellent agreement.    
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2 Mathematical formulation 
Let us consider the steady two-dimensional MHD flow of an incompressible viscous fluid over a 

nonlinear porous shrinking sheet at y = 0. The fluid is electrically conducting under the influence of an applied 

magnetic field B(x) normal to the shrinking sheet. The induced magnetic field is neglected. The governing 

equations for the flow problem are 
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where u and v are the velocity components in the x and y directions, respectively, ν is the kinematic viscosity, ρ 

is the density, and σ is the electrical conductivity of the fluid. In Eq. (2), the external electric field and 

polarization effects are negligible[19]. Thus, 

                                                              2

1

0)(





n

xBxB                                                (3) 

The boundary conditions corresponding to the nonlinear porous shrinking sheet are given as 

                           



yasyxuxVxvxcxu

n

n 0),(,)0,(,)0,( 2

1

0                (4)  

 

where 0V  is the porosity of the plate. We introduce the similarity variables and non-dimensional variables as 

following                                

                                       
n

w

nw x
nc

Ufxcuy
x

U

2

)1(
,)(,


 


                   (5)  

 

                                      












 )(

1

1
)( 


f

n

n
f

x

U
v w

                                    (6)   

   

Making use of Eqs. (5) and (6), the continuity equation is automatically satisfied and the momentum equation 

takes the form 

                                                  02  fMffff                                                    (7)    

The boundary conditions for the problem under consideration are 

 

                                    f (0) = K,      f '(0) = −1,     f '(∞) = 0,                                       (8) 

 

where K is the wall mass transfer parameter, M is the magnetic parameter, and β is the 

non-dimensional parameter. They are given as follows: 
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3 Method of solution 

Adomian decomposition method is used for solving operate equations of the form 

                                                       Nuvu                                                            (10) 

Where XXN :  is a nonlinear mapping from a Banach space X into itself and Xv  is known. Since 

the method does not resort to linearization or assumptions of week nonlinearity, the nonlinearities which can be 

handled are quite general and the solutions generated may be more realistic than those achieved by simplifying 
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the model of the physical problem to achieve conditions required for other techniques [27]. Adomian method 

assumes that the solution u can be expanded as an infinite series: 
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With Xun  , the image Nu has an expansion 
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With nXAn  ,  Substituting  and into (10) gives 
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Which is satisfied formally if we set  ,0 vu   nn Au 1  

Thus, we need to determine the so-called Adomian polynomials ,...3,2,1; nAn  To determine the sAn '  , a 

scalar parameter   is introduced to set 
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By applying the Adomian method to the flow problem (7) with boundary conditions (8). Let 

                                        fMfffLf  2''                                                      (17) 

Where the differential operator L is given by 
3

3

d

d
L            

The inverse operator 
1L  is therefor considered an 3- fold integral operator defined by 
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Operating with 
1L  on (7), we have 
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where )0(f   to be determined based on the boundary condition at infinity. The Adomian decomposition 

method introduces the following expression: 
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for the solution )(f  of (7), where the components )(nf  will be determined recurrently according to a 

recursive relation. Moreover, the method defines the nonlinear function ))(( fF  by an infinite series of 

polynomials  
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where nA  are the so-called Adomian polynomials that represent the nonlinear term ))(( fF and can be 

calculated for various classes of nonlinear operators according to specific algorithms presented previously. 

Subsituting (19) and (20) into (18) yields 
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By using (16), we obtain the following few terms of the Adomian polynomials nA : 
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and so on . Frome (22) we determine nf : 
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and so on, where constants 15,...,1, ici are defined as following 
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Due to lengthy calculations, the analytical results of higher order have been shown graphically. The series 

solution of equation (7) with boundary conditions  (8) can be written in the form of the following infinite series 

(20). According to the series solutions (20) the accuracy of Adomian method solution increases by increasing 

the number of solutions terms which it can be by helping of the MATHEMATICA computer software.  

 

4 Convergence and accuracy of the ADM solution 

We aim to study the mathematical behavior of the solution )(f  that can be achieved by forming 

Pad´e approximants which have the advantage of manipulating the polynomial approximation into a rational 

function to gain more information about )(f . To show its advantages, we compare the [m,m]  Pad´e 

approximants and numerical results of )0(f  for the flow with the differential equation (7) with boundary 

conditions  (8) at  1,1  K  and different values of M  in Table 1. It can be seen the [m,m]  Pad´e 

approximants converge and agree well with the numerical solution. 

 

 

5 Numerical Solution 
The nonlinear ordinary differential equation (7) with boundary conditions (8) is solved numerically 

using a shooting technique with fourth order Runge-Kutta method by choosing suitable guess values for  0f   

with prescribed parameters M, β and K The computation was carried out by using the MATLAB system to 

satisfy the convergence criteria of 
610

 with different step sizes. In this method, equation (7) with boundary 

conditions  (8) is converted into the following system of linear equation of first order   
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With the initial conditions  

                                    f (0) = K,      f '(0) = −1,     f '(∞) = 0,                                   (24)   

                                 

 

6 Results and discussion 
The computations have been carried out by assuming various values of the parameters involved in the 

problem and results are represented through Tables 1,2 and graphs (1-6).  The results of approximations for the 

ADM (present method) and HAM [7] solutions with different of andKM ,,  are present in Table 2. Is 

observed that  0f   increases with the mass suction parameter K and magnetic parameter M but an opposite 
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behavior is noted in case of non- dimensional parameter   which displays excellent consent between the 

current method and HAM [7].  

 

Table 1 Comparison of The [m,m] Pad´e approximants and numerical solution  of  0f   for 1,1  K  and 

different values of M  

[m,m] M=2.0 M=2.3 M=2.6 M=2.9 

 

[15,15] 

[16,16] 

[17,17] 

[18,18] 

[19,19] 

[20,20] 

Numerical 

 

1.61809 

1.61808 

1.61808 

1.61807 

1.61807 

1.61807 

1.61807 

 

1.74503 

1.74503 

1.74502 

1.74502 

1.74501 

1.74501 

1.74501 

 

1.86017 

1.86017 

1.86016 

1.86016 

1.86016 

1.86015 

1.86015 

 

1.96632 

1.96632 

1.96631 

1.96631 

1.96630 

1.96629 

1.96629 

 

Table 2 Comparison of the ADM and HAM solution of  0f   with different values of andKM ,,  

1,1  K  1,1  MK  1.0,2  M  

M  ADM HAM   ADM HAM K  ADM HAM 

2.0 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

3.0 

1.61807 

1.66193 

1.70419 

1.74501 

1.78454 

1.82290 

1.86015 

1.89643 

1.93178 

1.96629 

2.00000 

1.61806 

1.66192 

1.70418 

1.74500 

1.78453 

1.82289 

1.86015 

1.89643 

1.93178 

1.96629 

2.00000 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.86263 

1.83945 

1.81651 

1.79322 

1.76952 

1.74539 

1.72091 

1.69591 

1.67046 

1.64452 

1.61809 

1.86205 

1.83943 

1.81650 

1.79323 

1.76951 

1.74541 

1.72089 

1.69593 

1.67049 

1.64454 

1.61806 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.28268 

1.31880 

1.36922 

1.41985 

1.47434 

1.53100 

1.58822 

1.64816 

1.71004 

1.77383 

1.83945 

1.27098 

1.31880 

1.36864 

1.42044 

1.47434 

1.53028 

1.58822 

1.64816 

1.71004 

1.77381 

1.83943 

 

Figure.1 depicts the variation with   of the functions fandff ,   with 41,0  MandK  . The 

comparison of the ADM and numerical results of  velocity profiles f  and f  at 

41,0  MandK  are shown in In Fig.2 and 3.  In Fig. 4, depicts the influence of magnetic parameter 

M on velocity profiles  f  . It is observed that an increasing in the values of M, the velocity profile increases. 

In Fig. 5, the effects of the mass suction parameter K on  f   are presented. An increasing in the velocity is 

observed with an increasing in the mass suction parameter.  In Fig. 6, the effects of non- dimensional parameter 

  on  f   are presented. A decreasing  in the velocity is observed with an increasing in the non- 

dimensional  parameter. It is concluded that the results obtained are compatible with those in [7] . 

.  
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Fig. 1. Variation with    of the functions fandff ,   with 41,0  MandK  . 
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Fig. 2. Comparison of the ADM and numerical results of  velocity profile f   at 41,0  MandK   
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Fig. 3. Comparison of the ADM and numerical results of  velocity profile f  at 41,0  MandK   
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Fig. 4. Magnetic effects on velocity profile with 11  andK  
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Fig. 5. Suction effects on  velocity profile with 1.02  andM  
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Fig.6. Velocity profile under different values of   with K=1 and M=2. 

 

7 Conclusion 
The magnatichydrodynamic flow of a viscous fluid towards a nonlinear porous shrinking sheet is 

studed. The governing equations of the MHD flow are solved analytically and numerically the results are used 

to investigate the effects of various parameters on velocity, the main conclusions drawn from the study are as 

follows: 

-The mass suction parameter K and the magnetic parameter M have increasing effects on velocity profiles.  

- A decreasing in the velocity is noticed with increasing in the values of the parameter  . 

- From Tables and graphs, it is concluded that the results obtained are compatible with those in [7] . 
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